Original scientific paper
https://doi.org/10.15644/asc54/3/5
Effect of Saliva Contamination on Microleakage of Open Sandwich Restorations
Çiğdem Çelik
orcid.org/0000-0002-5936-0196
; Faculty of Dentistry, Department of Restorative Dentistry, Kırıkkale University, Turkey
Yusuf Bayraktar
orcid.org/0000-0001-6250-5651
; Faculty of Dentistry, Department of Restorative Dentistry, Kırıkkale University, Turkey
Behiye Esra Özdemir
orcid.org/0000-0003-4445-0823
; Faculty of Dentistry, Department of Restorative Dentistry, Kırıkkale University, Turkey
Abstract
Objectives: The purpose of the present study was to evaluate the microleakage of conventional glass-ionomer, resin modified glass-ionomer and glass hybrid ionomer Class II open sandwich restorations with or without saliva contamination. Material and methods: Sixty extracted sound human molar teeth were used and 120 class II slot cavities were prepared in mesial and distal surfaces. The gingival margins were located 1 mm below the cementoenamel junction. All specimens were randomly divided in 4 groups (n=15): Group I: High-Viscous Glass Ionomer (Fuji IX GP) Group II: Resin Modified Glass Ion-omer (Fuji II LC) Group III: Glass Hybrid Ionomer (Equia-fil Forte), Group IV: Composite Resin (G’aenial Posterior). In open sandwich restoration groups, glass ionomer materials were placed to gingival floor in 1 mm thickness and rest of the cavity was filled with resin composite. After the restorations in mesial surfaces had been performed, distal cavities were restored with the same protocol after saliva contamination. The specimens were thermocycled for 10000 cycles at 5 0 C to 55 0 C and immersed in methylene blue dye solution (% 0,5) for 24 hours. Then, they were sectioned vertically through the center of the restorations from mesial to distal surface with a water-cooled diamond saw with 1mm thickness. Subsequently, the dye penetration was evaluated with image analysis software. Data were statistically analyzed (p<0.05). Results: There was a statistically significant difference between gingival microleakage scores in no contamination groups, between high-viscous glass ionomer, Fuji IX GP and other materials tested (p<0.05). In saliva contaminated groups, there was no statistically significant difference between gingival microleakage scores (p>0.05). Additionally, there was not a statistically significant difference between the no contamination and saliva contaminated groups regardless of dental materials tested (p>0.05). Conclusion: Within the limitations of this study, in open sandwich restorations, saliva contamination did not show an adverse effect on microleakage irrespective of dental materials tested. Glass hybrid ionomers and resin modified glass ionomers showed lower microleakage scores in gingival margins compared to high-viscous glass ionomer material in no contamination groups.
Keywords
Permanent Dental Restoration; Dental Leakage; Glass Ionomer Cements; Composite Resins
Hrčak ID:
243989
URI
Publication date:
24.9.2020.
Visits: 2.202 *