Technical gazette, Vol. 28 No. 1, 2021.
Original scientific paper
https://doi.org/10.17559/TV-20191030075647
Spatial Stimuli Gradient Based Multifocus Image Fusion Using Multiple Sized Kernels
Muhammad Muzammil*
orcid.org/0000-0002-9151-8491
; International Islamic University, Islamabad, Pakistan, Room# 005, DEE, FET, IIUI, Sector H-10, Islamabad
Imdad Ali
orcid.org/0000-0002-5064-423X
; NCP, Quaid-e-Azam University, Islamabad, Pakistan NCP, QAU, Islamabad, Pakistan
Umer Javed
; International Islamic University, Islamabad, Pakistan Room 201, DEE, FET, IIUI, Sector H-10, Islamabad
Muhammad Amir
; International Islamic University, Islamabad, Pakistan DEE, FET, IIUI, Sector H-10, Islamabad
Ihsan Ulhaq
; International Islamic University, Islamabad, Pakistan DEE, FET, IIUI, Sector H-10, Islamabad
Abstract
Multi-focus image fusion technique extracts the focused areas from all the source images and combines them into a new image which contains all focused objects. This paper proposes a spatial domain fusion scheme for multi-focus images by using multiple size kernels. Firstly, source images are pre-processed with a contrast enhancement step and then the soft and hard decision maps are generated by employing a sliding window technique using multiple sized kernels on the gradient images. Hard decision map selects the accurate focus information from the source images, whereas, the soft decision map selects the basic focus information and contains minimum falsely detected focused/unfocused regions. These decision maps are further processed to compute the final focus map. Gradient images are constructed through state-ofthe-art edge detection technique, spatial stimuli gradient sketch model, which computes the local stimuli from perceived brightness and hence enhances the essential structural and edge information. Detailed experiment results demonstrate that the proposed multi-focus image fusion algorithm performs better than the other well known state-of-the-art multifocus image fusion methods, in terms of subjective visual perception and objective quality evaluation metrics.
Keywords
focus map; image fusion; multi-focus; multi kernel; spatial domain fusion
Hrčak ID:
251519
URI
Publication date:
5.2.2021.
Visits: 1.150 *