Skip to the main content

Original scientific paper

https://doi.org/10.31803/tg-20200815184439

The Three-Objective Optimization Model of Flexible Workshop Scheduling Problem for Minimizing Work Completion Time, Work Delay Time, and Energy Consumption

Neda Karim Ahangar orcid id orcid.org/0000-0003-4597-5509 ; Department of Industrial Engineering, College of Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
Majid Khalili ; Department of Industrial Engineering, College of Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
Hamed Tayebi ; Department of Industrial Engineering, College of Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran


Full text: english pdf 917 Kb

page 76-83

downloads: 674

cite


Abstract

In recent years, the optimal design of the workshop schedule has received much attention with the increased competition in the business environment. As a strategic issue, designing a workshop schedule affects other decisions in the production chain. The purpose of this thesis is to design a three-objective mathematical model, with the objectives of minimizing work completion time, work delay time and energy consumption, considering the importance of businesses attention to reduce energy consumption in recent years. The developed model has been solved using exact solution methods of Weighted Sum (WS) and Epsilon Constraint (Ɛ) in small dimensions using GAMS software. These problems were also solved in large-scale problems with NSGA-II and SFLA meta-heuristic algorithms using MATLAB software in single-objective and multi-objective mode due to the NP-Hard nature of this group of large and real dimensional problems. The standard BRdata set of problems were used to investigate the algorithms performance in solving these problems so that it is possible to compare the algorithms performance of this research with the results of the algorithms used by other researchers. The obtained results show the relatively appropriate performance of these algorithms in solving these problems and also the much better and more optimal performance of the NSGA-II algorithm compared to the performance of the SFLA algorithm.

Keywords

energy consumption; flexible workshop scheduling; makespan; multi-objective optimization; NSGA-II Algorithm; SFLA Algorithm

Hrčak ID:

253025

URI

https://hrcak.srce.hr/253025

Publication date:

3.3.2021.

Visits: 1.725 *