Original scientific paper
https://doi.org/10.31217/p.35.1.8
The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction
Vedran Mrzljak
orcid.org/0000-0003-0323-2600
; Faculty of Engineering, University of Rijeka, Rijeka, Croatia
Nikola Anđelić
; Faculty of Engineering, University of Rijeka, Rijeka, Croatia
Ivan Lorencin
; Faculty of Engineering, University of Rijeka, Rijeka, Croatia
Sandi Sandi Baressi Šegota
orcid.org/0000-0002-3015-1024
; Faculty of Engineering, University of Rijeka, Rijeka, Croatia
Abstract
This paper presents an exergy analysis of the whole turbine, turbine cylinders and cylinder parts in four different operating regimes. Analyzed turbine operates in nuclear power plant while three of four operating regimes are obtained by using optimization algorithms – SA (Simplex Algorithm), GA (Genetic Algorithm) and IGSA (Improved Genetic-Simplex Algorithm). IGSA operating regime gives the highest developed mechanical power of the whole turbine equal to 1022.48 MW, followed by GA (1020.06 MW) and SA (1017.16 MW), while in Original operating regime whole turbine develop mechanical power equal to 996.29 MW. In addition, IGSA causes the highest increase in developed mechanical power of almost all cylinders and cylinder parts in comparison to the Original operating regime. All observed optimization algorithms increases the exergy destruction of the whole turbine in comparison to Original operating regime - the lowest increase causes IGSA, followed by GA and finally SA. The highest exergy efficiency of the whole turbine, equal to 85.92% is obtained by IGSA, followed by GA (85.89%) and SA (85.82%), while the lowest exergy efficiency is obtained in Original operating regime (85.70%). Analyzed turbine, which operates by using wet steam is low influenced by the ambient temperature change. IGSA, which shows dominant performance in exergy analysis parameters of the analyzed turbine, in certain situations is overpowered by GA. Therefore, in optimization of steam turbine performance, IGSA and GA can be recommended.
Keywords
Nuclear power plant; Steam turbine; Exergy efficiency and destruction; Optimization algorithms
Hrčak ID:
259315
URI
Publication date:
30.6.2021.
Visits: 2.027 *