Skoči na glavni sadržaj

Izvorni znanstveni članak

Cyclic abelian varieties over finite fields in ordinary isogeny classes

Alejandro José Giangreco ; Aix Marseille Université CNRS, Centrale Marseille, Marseille, France


Puni tekst: engleski pdf 339 Kb

str. 151-158

preuzimanja: 236

citiraj


Sažetak

Given an abelian variety A defined over a finite field k, we say that A is cyclic if its group A(k) of rational points is cyclic. In this paper we give a bijection between cyclic abelian varieties of an ordinary isogeny class \(\mathcal{A}\) with Weil polynomial \(f_{\mathcal{A}}\) and some classes of matrices with integer coefficients and having \(f_{\mathcal{A}}\) as characteristic polynomial.

Ključne riječi

group of rational points; cyclic; ordinary abelian variety; finite field; class of matrices

Hrčak ID:

261509

URI

https://hrcak.srce.hr/261509

Datum izdavanja:

26.8.2021.

Posjeta: 756 *