Skoči na glavni sadržaj

Izvorni znanstveni članak

https://doi.org/10.17535/crorr.2016.0006

Research project grouping and ranking by using adaptive Mahalanobis clustering

Zeljko Turkalj ; Ekonomski fakultet u Osijeku, Sveučilište Josipa Jurja Strossmayera, Osijek, Hrvatska
Damir Markulak orcid id orcid.org/0000-0003-4916-1844 ; Građevinski fakultet, Sveučilište Josipa Jurja Strossmayera, Osijek, Hrvatska
Slavica Singer ; Ekonomski fakultet u Osijeku, Sveučilište Josipa Jurja Strossmayera, Osijek, Hrvatska
Rudolf Scitovski orcid id orcid.org/0000-0002-7386-5991 ; Odjel za matematiku, Sveučilište Josipa Jurja Strossmayera, Osijek, Hrvatska


Puni tekst: engleski pdf 200 Kb

str. 81-96

preuzimanja: 656

citiraj


Sažetak

The paper discusses the problem of grouping and ranking of research projects submitted for a call. The projects are grouped into clusters based on the assessment obtained in the review procedure and by using the adaptive Mahalanobis clustering method as a special case of the Expectation Maximization algorithm. The cluster of projects assessed as best is specially analyzed and ranked. The paper outlines several possibilities for the use of data obtained in the review procedure, and the proposed method is illustrated with the example of internal research projects at the University of Osijek.

Ključne riječi

adaptive Mahalanobis clustering; multi-criteria decision making; evaluation; project clustering

Hrčak ID:

157350

URI

https://hrcak.srce.hr/157350

Datum izdavanja:

5.4.2016.

Posjeta: 1.732 *