Skoči na glavni sadržaj

Izvorni znanstveni članak

Poboljšanje energetske učinkovitosti bušaćega postrojenja kroz primjenu baterijskoga sustava za pohranu energije

Danijel Pavković
Gordana Barić
Mihael Cipek
Matija Krznar


Puni tekst: hrvatski pdf 2.161 Kb

str. 101-111

preuzimanja: 155

citiraj

Preuzmi JATS datoteku


Sažetak

U radu su predstavljeni rezultati analize uštede energije (goriva) izolirane dizelske elektrane bušaćega postrojenja opremljenoga baterijskim sustavom za pohranu energije za kompenzaciju vršnih opterećenja. Strategija upravljanja tokovima energije uključuje logiku uključivanja i isključivanja generatora i poravnavanje vršnih opterećenja temeljeno na trenutnim zahtjevima za radnom i jalovom snagom mikromreže postrojenja. Analiza se provodi na 30-dnevnim podacima opterećenja mikromreže izolirane kopnene bušaće garniture, koju karakterizira varijabilno radno i jalovo opterećenje. Glavni zaključak je kako se izbjegavanjem rada pri malim snagama pojedinačnih generatora i osiguravanjem zahtjeva za vršnom snagom iz namjenskog baterijskoga sustava za pohranu energije, može značajno smanjiti potrošnja goriva dizel-agregatne elektrane, otprilike 12 % u usporedbi s dosadašnjom praksom koja se oslanja isključivo na odlučivanju stručnjaka na terenu. Konačno, analiza je, također, pokazala da razdoblje povrata ulaganja u razmatranio baterijski sustav za pohranu energije jest jedna do dvije godine.

Ključne riječi

mikromreža bušaćega postrojenja; dizelska elektrana; uštede goriva; upravljanje energijom; baterijski sustav za pohranu energije; razdoblje povrata ulaganja

Hrčak ID:

288027

URI

https://hrcak.srce.hr/288027

Datum izdavanja:

21.9.2022.

Podaci na drugim jezicima: engleski

Posjeta: 834 *




Uvod

Shematski prikaz izmjenične (AC) trofazne mikromreže kopnene bušaće garniture napajane iz pripadajuće dizel-agregatne elektrane (Lyons i Plisga, 2005) prikazan je na slici 1. Mikromrežu karakteriziraju značajne varijacije opterećenja (radne snage) zbog čestog uključivanja i varijabilne snage isplačnih pumpi, dizalice bušaćega niza i vršnih pogona za bušenje s tzv. "top-drive" elektromotorom. Pored toga, postoji i značajna komponenta jalove snage, primarno zbog korištenja reguliranih elektromotornih pogona koji koriste tiristorske pretvarače snage i istosmjerne (DC) strojeve sa serijskom uzbudom (Caldeira i Watanabe, 1988). Prethodno spomenute varijacije snage u mreži, naročito one koje se javljaju tijekom postavljanja bušaćih kolona i zamjene bušaćega alata, stabilizacije bušotine cementiranjem njenih stijenki, te operacija usmjerenog bušenja, obično su pokrivene uključivanjem dodatnih generatora, a što rezultira povećanjem potrošnje goriva. Stoga bi bilo vrijedno analizirati rad diezel-agregatne elektrane i pripadajuće mikromreže za tipične operativne scenarije, a kako bi se pronašle odgovarajuće mjere za smanjenje potrošnje goriva. To može uključivati odgovarajuće tehnike uključivanja i isključivanja generatora i povezanu hibridizaciju mikromreža u smislu uključivanja dodatnog baterijskoga sustava za pohranu električne energije (crtkani blok na slici 1), a koja se također može koristiti kao pričuvni izvor napajanja u slučaju nužde. Kao što navode Kaiser i Snyder (2013), mjere rekonstrukcije i modernizacije elektroenergetske mreže bušaćih postrojenja obično obuhvaćaju tek manji dio troškova potpuno novog postrojenja, što bi ove nadogradnje moglo učiniti prihvatljivim malim i srednjim tvrtkama u ovoj branši. Štoviše, prethodno spomenute mjere hibridizacije također mogu imati širi opseg, jer elektrane opremljene agregatima pokretanim motorima s unutarnjim izgaranjem mogu činiti do 15 % ukupnih instaliranih kapaciteta diljem svijeta (Kanoğlu, Işık, i drugi, 2005), bilo u obliku primarnih izvora energije za izolirane (otočne) električne mreže (kao što je mikromreža u ovom tekstu) ili kao pričuvna postrojenja za hotele, zračne luke, bolnice i one industrije koje zahtijevaju pouzdano napajanje u svakom trenutku. Budući da je rad dizelskih elektrana obično povezan s prilično značajnim troškovima transporta goriva (Hunt i Szymborsky, 2009), značajni napori posvećeni su optimiranju potrošnje goriva. Nedavna istraživanja su pokazala da se metaheuristički algoritmi pretraživanja mogu koristiti za pronalaženje optimalnog broja generatora (Yadav, Kumar i drugi, 2011) koji minimizira specifičnu potrošnju goriva elektrane. Zbog svoje jednostavnosti, strategije upravljanja temeljene na bazi pravila često se koriste u aplikacijama upravljanja energijom u stvarnom vremenu u svrhu koordinacije više izvora energije (Koohi-Kamali, Rahim i drugi, 2014). Kako bi se zadovoljila potreba za isporukom energije i kompenzacija vršnih opterećenja takvih hibridnih mikromreža, prikladne strategije upravljanja obično su uključene u sustav upravljanja energetskim pretvaračem baterijskoga sustava za pohranu energije (Kim, Jeon i drugi, 2010), pri čemu potonji treba biti dizajniran s dovoljnim kapacitetom pohrane za očekivane režime pražnjenja (Kaldellis, Zafrakis i drugi, 2009), dok sučelje pretvarača snage na strani mreže treba biti dimenzionirano na temelju očekivane isporuke vršne snage (Fernão-Pires, Romero-Cadaval i drugi, 2014). Potreban kapacitet pohrane i izbor prikladne tehnologije baterija obično se temelji na analizi vremenski promjenjivih profila opterećenja (Guarino, Cassarà i drugi, 2015). S druge strane, predviđeni režimi rada sustava za pohranu energije, tj. izravnavanje vršnoga (pulsnog) opterećenja ili stabilna isporuka energije kroz dulji vremenski period, predstavljaju ključne kriterije za odabir prikladne tehnologije baterija u sustavima za pohranu energije (Poullikkas, 2013). Stoga se u ovom radu ukratko opisuje i analizira ponašanje mikromreže temeljene na dizelskim agregatima i baterijskim sustavom za pohranu energije, pri čemu baterija služi za poravnavanje vršnih opterećenja (Pavković, Sedić i drugi, 2016). Time se postiže ujednačeniji rad dizelskih agregata uz izbjegavanje rada na niskim opterećenjima karakteriziranim većom specifičnom potrošnjom goriva. Ovo pak ima za posljedicu značajno smanjenje potrošnje goriva i uz to vezanih emisija stakleničkih plinova u usporedbi s trenutnom praksom koja se oslanja samo na dizel-agregatnu elektranu i proces odlučivanja stručnjaka na terenu.

Metode

Metode korištene u izradi rada.

Rezultati

Tekst rezultata

Rasprava

Tekst

References

1. 

BATTKE B.; ; SCHMIDT T.S.; ; GROSSPIETSCH D.; ; HOFFMANN V.H. , authors. 2013."A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications". Renewable and Sustainable Energy Reviews. (25):240–250

2. 

BESSELINK I.J.M.; ; VAN OORSCHOT P.F.; ; MEINDERS E.; ; NIJMEIJER H. , authors. 2010."Design of an efficient, low weight battery electric vehicle based on VW Lupo 3L". Proceedings of the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition (EVS 25). ():

3. 

CALDEIRA P.P.A.; ; WATANABE E.H. , authors. 1988."Compensation of Power Factor in Rectifier Systems Utilized in Oil Drilling Rigs". IEEE Transactions on Industry Applications. 24(2):301–307

4. 

, author. 2015."Caterpillar D399 Marine Generator Set, Technical Data Sheet". CATERPILLAR TRACTOR CO. https://marine.cat.com/cat-D399():

5. 

DELIJA-RUŽIĆ V.; ; HUBLIN A.; ; MARKOVIĆ B.; ; STANKIĆ I.; ; KOS R.; ; OPETUK F.; ; JELAVIĆ V.; ; RADOŠ D.; ; ŠVEDEK I.; ; POLJANAC M.; ; ČESNIK KATULIĆ M.; ; GLÜCKSELIG B.; ; HIMA S. , authors. 2021."Report on Implementation of Policies and Measures that Reduce Greenhouse Gas Emissions by Sources or Enhance Removals by Sinks, EKONERG – Energy Research and Environmental Protection Institute". Report to Ministry of Economy and Sustainable Development (Contract No. 99/18 (I-08-0171)), Zagreb, Croatia. ():

6. 

BRIŠEVAC Z.; ; KUJUNDŽIĆ T.; ; JUTRIŠA B. , authors. 2015."Weekly Oil Bulletin: Consumer prices of petroleum products". EUROPEAN COMMISSION. http://ec.europa.eu/energy/():

7. 

FERNÃO-PIRES V.; ; ROMERO-CADAVAL E.; ; VINNIKOV D.; ; ROASTO I.; ; MARTINS J.F. , authors. 2014."Power converter interfaces for electrochemical energy storage systems". A review, Energy Conversion and Management. (86):453–475

8. 

GUARINO F.; ; CASSARÀ P.; ; LONGO S.; ; CELLURA M.; ; FERRO E. , authors. 2015."Load match optimisation of a residential building case study". A cross-entropy based electricity storage sizing algorithm, Applied Energy. https://doi.org/10.1016/j.proeng.2017.05.201(154):390–391

9. 

HOPKINS D.; ; FOX I.; ; MOLDEN D. , authors. 2019."Gas Powered Engines with Energy Storage – A Game Changer in Land Drilling". Proceedings of IADC/SPE International Drilling Conference and Exhibition, Paper No. IADC/SPE-199671-MS. ():

10. 

HUNT G.; ; SZYMBORSKY J. , authors. 2009."Achievements of an ABSOLYTE Valve-Regulated Lead-Acid Battery Operating in a Utility Battery Energy Storage System (BESS) for 12 years". EESAT 2009 Biennial International Conference, 2009, Seattle, WA, USA. ():

11. 

, author. 2015."IRENA’s Costing Study". IRENA - International Renewable Energy Agency: Road Transport: The Cost of Renewable Solutions. http://www.irena.org/publications():

12. 

KAISER M.J.; ; SNYDER B.F. , authors. 2013."The Offshore Drilling Industry and Rig Construction in the Gulf of Mexico". Lecture Notes in Energy 8, Springer-Verlag, London, UK. ():

13. 

KALDELLIS J.K.; ; ZAFIRAKIS D.; ; KAVADIAS K. , authors. 2009."Techno-economic comparison of energy storage systems for island autonomous electrical networks". Renewable and Sustainable Energy Reviews. ():

14. 

KANOĞLU M.; ; IŞIK S.K.; ; ABUŞOĞLU A. , authors. 2005."Performance characteristics of a Diesel engine power plant". Energy Conversion and Management. 46(11-12):1692–1702

15. 

KATIRAEI F.; ; ABBEY C. , authors. 2007."Diesel Plant Sizing and Performance Analysis of a Remote Wind-Diesel Microgrid". Proceedings of the IEEE Power and Energy Society 2007 General Meeting. ():

16. 

KIM J.Y.; ; JEON J.H.; KIM S.K.; CHO C.; ; PARK J.H.; ; KIM H.M.; ; NAM K.Y. , authors. 2010."Cooperative Control Strategy of Energy Storage System and Microsources for Stabilizing the Microgrid during Islanded Operation". IEEE Transactions on Power Electronics. https://doi.org/0.1007/s13369-012-0247-925(12):3037–3048

17. 

KOOHI-KAMALI S.; ; RAHIM N.A.; ; MOKHLIS H. , authors. 2014."Smart power management algorithm in microgrid consisting of photovoltaic, diesel, and battery storage plants considering variations in sunlight, temperature, and load". Energy Conversion and Management. (84):562–582

18. 

LYONS W.C.; ; PLISGA G.J. , authors. 2005."Standard handbook of petroleum and natural gas engineering, 2nd ed.". Gulf Professional Publishing. ():

19. 

OMAR N.; ; MONEM M.A.; ; FIROUZ Y.; ; SALMIEN J.; ; SMEKENS J.; ; HAGAZY O.; ; GAULOUS H.; ; MULDER G.; ; VAN DEN BOSSCHE P.; ; COOSEMANS T.; ; VAN MIERLO J. , authors. 2014."Lithium Iron Phosphate Based Battery – Assessment of Aging Parameters and Development of Life Cycle Model". Applied Energy. (113):1575–1585

20. 

PAVKOVIĆ D.; ; HOIĆ M.; ; DEUR J.; ; PETRIĆ J. , authors. 2014."Energy Storage Systems Sizing Study for a High-Altitude Wind Energy Application". Energy. (76):91–103

21. 

PAVKOVIĆ D.; ; SEDIĆ A.; ; GUZOVIĆ Z. , authors. 2016."Oil Drilling Rig Diesel Power-plant Fuel Efficiency Improvement Potentials through Rule-Based Generator Scheduling and Utilization of Battery Energy Storage System". Energy Conversion and Management. (121):194–211

22. 

PAVKOVIĆ D.; ; ŠPRLJAN P.; ; CIPEK M.; ; KRZNAR M. , authors. 2021."Cross-Axis Control System Design for Borehole Drilling based on Damping Optimum Criterion and Utilization of Proportional-Integral Controllers". Optimization and Engineering. 22(1):51–81

23. 

POULLIKKAS A. , author. 2013."A comparative overview of large-scale battery systems for electricity storage". Renewable and Sustainable Energy Reviews. https://doi.org/10.17794/rgn.2021.1.3(27):778–788

24. 

RAHIMI-EICHI H.; ; OJHA U.; ; BARONTI F.; ; CHOW M.Y. , authors. 2013."Battery Management System - An Overview of Its Application in the Smart Grid and Electric Vehicles". IEEE Industrial Electronics Magazine. https://doi.org/10.15530/URTEC-2017-26951147(2):5–16

25. 

SAUER D.U.; ; WENZL H. , authors. 2008."Comparison of Different Approaches for Lifetime Prediction of Electrochemical Systems – using Lead-Acid Batteries as Example". Journal of Power Sources. 178(2):531–546

26. 

SEN P.C.; ; DORADLA S.R. , authors. 1976."Symmetrical and Extinction Angle Control of Solid-State Series Motor Drive". IEEE Transactions on Industrial Electronics and Control Instrumentation. 23(1):31–38

27. 

YADAV P.; ; KUMAR R.; ; PANDA S.K.; ; CHANG C.S. , authors. 2011."An Improved Harmony Search algorithm for optimal scheduling of the diesel generators in oil rig platforms". Energy Conversion and Management. 52(2):893–902


This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.