hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.3336/gm.47.2.16

Map of quasicomponents induced by a shape morphism

Nikita Shekutkovski ; Institute of Mathematics, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, 1000 Skopje, Republic of Macedonia
Tatjana Atanasova-Pachemska   ORCID icon orcid.org/0000-0001-6740-9327 ; University "Goce Delchev" - Shtip, Faculty of Informatics, 2000 Shtip, Republic of Macedonia
Gjorgji Markoski ; Institute of Mathematics, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, 1000 Skopje, Republic of Macedonia

Puni tekst: engleski, pdf (123 KB) str. 431-439 preuzimanja: 250* citiraj
APA 6th Edition
Shekutkovski, N., Atanasova-Pachemska, T. i Markoski, G. (2012). Map of quasicomponents induced by a shape morphism. Glasnik matematički, 47 (2), 431-439. https://doi.org/10.3336/gm.47.2.16
MLA 8th Edition
Shekutkovski, Nikita, et al. "Map of quasicomponents induced by a shape morphism." Glasnik matematički, vol. 47, br. 2, 2012, str. 431-439. https://doi.org/10.3336/gm.47.2.16. Citirano 22.10.2021.
Chicago 17th Edition
Shekutkovski, Nikita, Tatjana Atanasova-Pachemska i Gjorgji Markoski. "Map of quasicomponents induced by a shape morphism." Glasnik matematički 47, br. 2 (2012): 431-439. https://doi.org/10.3336/gm.47.2.16
Harvard
Shekutkovski, N., Atanasova-Pachemska, T., i Markoski, G. (2012). 'Map of quasicomponents induced by a shape morphism', Glasnik matematički, 47(2), str. 431-439. https://doi.org/10.3336/gm.47.2.16
Vancouver
Shekutkovski N, Atanasova-Pachemska T, Markoski G. Map of quasicomponents induced by a shape morphism. Glasnik matematički [Internet]. 2012 [pristupljeno 22.10.2021.];47(2):431-439. https://doi.org/10.3336/gm.47.2.16
IEEE
N. Shekutkovski, T. Atanasova-Pachemska i G. Markoski, "Map of quasicomponents induced by a shape morphism", Glasnik matematički, vol.47, br. 2, str. 431-439, 2012. [Online]. https://doi.org/10.3336/gm.47.2.16

Sažetak
Using the intrinsic definition of shape we prove an analogue of well known Borsuk’s theorem for compact metric spaces. Suppose X and Y are locally compact metric spaces with compact spaces of quasicomponents QX and QY. For a shape morphism f: X → Y there exists a unique continuous map f# :QX → QY, such that for a quasicomponent Q from X and W a clopen set containing f# (Q) the restriction f:Q → W, is a shape morphism, also.

Ključne riječi
Intrinsic definition; continuity up to a covering; proximate sequence; proximate net; quasicomponents

Hrčak ID: 93959

URI
https://hrcak.srce.hr/93959

Posjeta: 482 *