Prediction of dimensional deviation of workpiece using regression, ANN and PSO models in turning operation
David Mocnik
; Techne d.o.o., Rakičan, Panonska ulica 36, 9000 Murska Sobota, Slovenia
Matej Paulic
; University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia
Simon Klancnik
; University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia
Joze Balic
; University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia
APA 6th Edition Mocnik, D., Paulic, M., Klancnik, S. i Balic, J. (2014). Prediction of dimensional deviation of workpiece using regression, ANN and PSO models in turning operation. Tehnički vjesnik, 21 (1), 55-62. Preuzeto s https://hrcak.srce.hr/116575
MLA 8th Edition Mocnik, David, et al. "Prediction of dimensional deviation of workpiece using regression, ANN and PSO models in turning operation." Tehnički vjesnik, vol. 21, br. 1, 2014, str. 55-62. https://hrcak.srce.hr/116575. Citirano 26.02.2021.
Chicago 17th Edition Mocnik, David, Matej Paulic, Simon Klancnik i Joze Balic. "Prediction of dimensional deviation of workpiece using regression, ANN and PSO models in turning operation." Tehnički vjesnik 21, br. 1 (2014): 55-62. https://hrcak.srce.hr/116575
Harvard Mocnik, D., et al. (2014). 'Prediction of dimensional deviation of workpiece using regression, ANN and PSO models in turning operation', Tehnički vjesnik, 21(1), str. 55-62. Preuzeto s: https://hrcak.srce.hr/116575 (Datum pristupa: 26.02.2021.)
Vancouver Mocnik D, Paulic M, Klancnik S, Balic J. Prediction of dimensional deviation of workpiece using regression, ANN and PSO models in turning operation. Tehnički vjesnik [Internet]. 2014 [pristupljeno 26.02.2021.];21(1):55-62. Dostupno na: https://hrcak.srce.hr/116575
IEEE D. Mocnik, M. Paulic, S. Klancnik i J. Balic, "Prediction of dimensional deviation of workpiece using regression, ANN and PSO models in turning operation", Tehnički vjesnik, vol.21, br. 1, str. 55-62, 2014. [Online]. Dostupno na: https://hrcak.srce.hr/116575. [Citirano: 26.02.2021.]
APA 6th Edition Mocnik, D., Paulic, M., Klancnik, S. i Balic, J. (2014). Predviđanje dimenzionalnih devijacija obratka primjenom regresijskih, ANN i PSO modela u postupku tokarenja. Tehnički vjesnik, 21 (1), 55-62. Preuzeto s https://hrcak.srce.hr/116575
MLA 8th Edition Mocnik, David, et al. "Predviđanje dimenzionalnih devijacija obratka primjenom regresijskih, ANN i PSO modela u postupku tokarenja." Tehnički vjesnik, vol. 21, br. 1, 2014, str. 55-62. https://hrcak.srce.hr/116575. Citirano 26.02.2021.
Chicago 17th Edition Mocnik, David, Matej Paulic, Simon Klancnik i Joze Balic. "Predviđanje dimenzionalnih devijacija obratka primjenom regresijskih, ANN i PSO modela u postupku tokarenja." Tehnički vjesnik 21, br. 1 (2014): 55-62. https://hrcak.srce.hr/116575
Harvard Mocnik, D., et al. (2014). 'Predviđanje dimenzionalnih devijacija obratka primjenom regresijskih, ANN i PSO modela u postupku tokarenja', Tehnički vjesnik, 21(1), str. 55-62. Preuzeto s: https://hrcak.srce.hr/116575 (Datum pristupa: 26.02.2021.)
Vancouver Mocnik D, Paulic M, Klancnik S, Balic J. Predviđanje dimenzionalnih devijacija obratka primjenom regresijskih, ANN i PSO modela u postupku tokarenja. Tehnički vjesnik [Internet]. 2014 [pristupljeno 26.02.2021.];21(1):55-62. Dostupno na: https://hrcak.srce.hr/116575
IEEE D. Mocnik, M. Paulic, S. Klancnik i J. Balic, "Predviđanje dimenzionalnih devijacija obratka primjenom regresijskih, ANN i PSO modela u postupku tokarenja", Tehnički vjesnik, vol.21, br. 1, str. 55-62, 2014. [Online]. Dostupno na: https://hrcak.srce.hr/116575. [Citirano: 26.02.2021.]
Sažetak As manufacturing companies pursue higher-quality products, they spend much of their efforts monitoring and controlling dimensional accuracy. In the present work for dimensional deviation prediction of workpiece in turning 11SMn30 steel, the conventional deterministic approach, such as multiple linear regression and two artificial intelligence techniques, back-propagation feed-forward artificial neural network (ANN) and particle swarm optimization (PSO) have been used. Spindle speed, feed rate, depth of cut, pressure of cooling lubrication fluid and number of produced parts were taken as input parameters and dimensional deviation of workpiece as an output parameter. Significance of a single parameter and their interactive influences on dimensional deviation were statistically analysed and values predicted from regression, ANN and PSO models were compared with experimental results to estimate prediction accuracy. A predictive PSO based model showed better predictions than two remaining models. However, all three models can be used for the prediction of dimensional deviation in turning.