Semantic and Contextual Knowledge Representation for Lexical Disambiguation: Case of Arabic-French Query Translation
Souheyl Mallat
; Department of Computer Sciences, University of Monastir, Tunisia, LATICE Laboratory Research
Mohamed Achraf Ben Mohamed
; Department of Computer Sciences, University of Monastir, Tunisia, LATICE Laboratory Research
Emna Hkiri
; Department of Computer Sciences, University of Monastir, Tunisia, LATICE Laboratory Research
Anis Zouaghi
; Department of Computer Sciences, Higher Institute of Applied Science and Technologies Sousse, Tunisia, LATICE Laboratory Research
Mounir Zrigui
; Department of Computer Sciences, University of Monastir, Tunisia, LATICE Laboratory Research
APA 6th Edition Mallat, S., Ben Mohamed, M.A., Hkiri, E., Zouaghi, A. i Zrigui, M. (2014). Semantic and Contextual Knowledge Representation for Lexical Disambiguation: Case of Arabic-French Query Translation. Journal of computing and information technology, 22 (3), 191-215. https://doi.org/10.2498/cit.1002234
MLA 8th Edition Mallat, Souheyl, et al. "Semantic and Contextual Knowledge Representation for Lexical Disambiguation: Case of Arabic-French Query Translation." Journal of computing and information technology, vol. 22, br. 3, 2014, str. 191-215. https://doi.org/10.2498/cit.1002234. Citirano 07.03.2021.
Chicago 17th Edition Mallat, Souheyl, Mohamed Achraf Ben Mohamed, Emna Hkiri, Anis Zouaghi i Mounir Zrigui. "Semantic and Contextual Knowledge Representation for Lexical Disambiguation: Case of Arabic-French Query Translation." Journal of computing and information technology 22, br. 3 (2014): 191-215. https://doi.org/10.2498/cit.1002234
Harvard Mallat, S., et al. (2014). 'Semantic and Contextual Knowledge Representation for Lexical Disambiguation: Case of Arabic-French Query Translation', Journal of computing and information technology, 22(3), str. 191-215. https://doi.org/10.2498/cit.1002234
Vancouver Mallat S, Ben Mohamed MA, Hkiri E, Zouaghi A, Zrigui M. Semantic and Contextual Knowledge Representation for Lexical Disambiguation: Case of Arabic-French Query Translation. Journal of computing and information technology [Internet]. 2014 [pristupljeno 07.03.2021.];22(3):191-215. https://doi.org/10.2498/cit.1002234
IEEE S. Mallat, M.A. Ben Mohamed, E. Hkiri, A. Zouaghi i M. Zrigui, "Semantic and Contextual Knowledge Representation for Lexical Disambiguation: Case of Arabic-French Query Translation", Journal of computing and information technology, vol.22, br. 3, str. 191-215, 2014. [Online]. https://doi.org/10.2498/cit.1002234
Sažetak
We present in this paper, an automatic query translation system in cross-language information retrieval (Arabic-French). For the lexical disambiguation, our system combines between two resources: a bilingual dictionary and a parallel corpus. To select the best translation, our method is based on a correspondence measure between two semantic networks. The first one represents the senses of ambiguous terms of the query. The second one is a semantic network contextually enriched, representing the collection of sentences responding to the query. This collection forms the knowledge base of our disambiguation method and it is obtained by alignment with the relevant sentences in Arabic. The evaluation of the proposed system shows the advantage of the contextual enrichment on the quality of the translation. We obtained a high precision, relatively proportional to the precision provided by the used alignment. Finally, our translation demonstrates its potential by comparing its Bleu score with that of Google translate.