hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.17559/TV-20150314115623

Adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity

Limin Wang ; School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun 130117, China
Qiang Ji ; School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun 130117, China
Xuming Han ; School of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China

Puni tekst: engleski, pdf (867 KB) str. 425-435 preuzimanja: 424* citiraj
APA 6th Edition
Wang, L., Ji, Q. i Han, X. (2016). Adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity. Tehnički vjesnik, 23 (2), 425-435. https://doi.org/10.17559/TV-20150314115623
MLA 8th Edition
Wang, Limin, et al. "Adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity." Tehnički vjesnik, vol. 23, br. 2, 2016, str. 425-435. https://doi.org/10.17559/TV-20150314115623. Citirano 27.02.2021.
Chicago 17th Edition
Wang, Limin, Qiang Ji i Xuming Han. "Adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity." Tehnički vjesnik 23, br. 2 (2016): 425-435. https://doi.org/10.17559/TV-20150314115623
Harvard
Wang, L., Ji, Q., i Han, X. (2016). 'Adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity', Tehnički vjesnik, 23(2), str. 425-435. https://doi.org/10.17559/TV-20150314115623
Vancouver
Wang L, Ji Q, Han X. Adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity. Tehnički vjesnik [Internet]. 2016 [pristupljeno 27.02.2021.];23(2):425-435. https://doi.org/10.17559/TV-20150314115623
IEEE
L. Wang, Q. Ji i X. Han, "Adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity", Tehnički vjesnik, vol.23, br. 2, str. 425-435, 2016. [Online]. https://doi.org/10.17559/TV-20150314115623
Puni tekst: hrvatski, pdf (867 KB) str. 425-435 preuzimanja: 232* citiraj
APA 6th Edition
Wang, L., Ji, Q. i Han, X. (2016). Prilagodljivi polu-nadzirani algoritam grupiranja za srodno širenje utemeljen na strukturnoj sličnosti. Tehnički vjesnik, 23 (2), 425-435. https://doi.org/10.17559/TV-20150314115623
MLA 8th Edition
Wang, Limin, et al. "Prilagodljivi polu-nadzirani algoritam grupiranja za srodno širenje utemeljen na strukturnoj sličnosti." Tehnički vjesnik, vol. 23, br. 2, 2016, str. 425-435. https://doi.org/10.17559/TV-20150314115623. Citirano 27.02.2021.
Chicago 17th Edition
Wang, Limin, Qiang Ji i Xuming Han. "Prilagodljivi polu-nadzirani algoritam grupiranja za srodno širenje utemeljen na strukturnoj sličnosti." Tehnički vjesnik 23, br. 2 (2016): 425-435. https://doi.org/10.17559/TV-20150314115623
Harvard
Wang, L., Ji, Q., i Han, X. (2016). 'Prilagodljivi polu-nadzirani algoritam grupiranja za srodno širenje utemeljen na strukturnoj sličnosti', Tehnički vjesnik, 23(2), str. 425-435. https://doi.org/10.17559/TV-20150314115623
Vancouver
Wang L, Ji Q, Han X. Prilagodljivi polu-nadzirani algoritam grupiranja za srodno širenje utemeljen na strukturnoj sličnosti. Tehnički vjesnik [Internet]. 2016 [pristupljeno 27.02.2021.];23(2):425-435. https://doi.org/10.17559/TV-20150314115623
IEEE
L. Wang, Q. Ji i X. Han, "Prilagodljivi polu-nadzirani algoritam grupiranja za srodno širenje utemeljen na strukturnoj sličnosti", Tehnički vjesnik, vol.23, br. 2, str. 425-435, 2016. [Online]. https://doi.org/10.17559/TV-20150314115623

Sažetak
In view of the unsatisfying clustering effect of affinity propagation (AP) clustering algorithm when dealing with data sets of complex structures, an adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity (SAAP-SS) is proposed in this paper. First, a novel structural similarity is proposed by solving a non-linear, low-rank representation problem. Then we perform affinity propagation on the basis of adjusting the similarity matrix by utilizing the known pairwise constraints. Finally, the idea of fireworks explosion is introduced into the process of the algorithm. By adaptively searching the preference space bi-directionally, the algorithm’s global and local searching abilities are balanced in order to find the optimal clustering structure. The results of the experiments with both synthetic and real data sets show performance improvements of the proposed algorithm compared with AP, FEO-SAP and K-means methods.

Ključne riječi
affinity propagation; fireworks explosion optimization; low rank representation; semi-supervised clustering; structural similarity

Hrčak ID: 156831

URI
https://hrcak.srce.hr/156831

[hrvatski]

Posjeta: 972 *