hrcak mascot   Srce   HID

Prethodno priopćenje
https://doi.org/10.17559/TV-20140226123632

An approximation of deflection line function at the rod loaded by buckling under self-weight

Željko Rosandić ; Mechanical Engineering Faculty in Slavonski Brod, J. J. Strossmayer University of Osijek, Trg Ivane Brlić Mažuranić 2, HR-35000 Slavonski Brod, Croatia
Stanislav Kotšmíd ; Faculty of Environmental and Manufacturing Technology, Technical University in Zvolen, Študentská 26, 960 01 Zvolen, Slovak Republic
Pavel Beňo   ORCID icon orcid.org/0000-0002-6595-7757 ; Faculty of Environmental and Manufacturing Technology, Technical University in Zvolen, Študentská 26, 960 01 Zvolen, Slovak Republic
Marián Minárik ; Faculty of Environmental and Manufacturing Technology, Technical University in Zvolen, Študentská 26, 960 01 Zvolen, Slovak Republic

Puni tekst: engleski, pdf (501 KB) str. 555-559 preuzimanja: 251* citiraj
APA 6th Edition
Rosandić, Ž., Kotšmíd, S., Beňo, P. i Minárik, M. (2016). An approximation of deflection line function at the rod loaded by buckling under self-weight. Tehnički vjesnik, 23 (2), 555-559. https://doi.org/10.17559/TV-20140226123632
MLA 8th Edition
Rosandić, Željko, et al. "An approximation of deflection line function at the rod loaded by buckling under self-weight." Tehnički vjesnik, vol. 23, br. 2, 2016, str. 555-559. https://doi.org/10.17559/TV-20140226123632. Citirano 05.03.2021.
Chicago 17th Edition
Rosandić, Željko, Stanislav Kotšmíd, Pavel Beňo i Marián Minárik. "An approximation of deflection line function at the rod loaded by buckling under self-weight." Tehnički vjesnik 23, br. 2 (2016): 555-559. https://doi.org/10.17559/TV-20140226123632
Harvard
Rosandić, Ž., et al. (2016). 'An approximation of deflection line function at the rod loaded by buckling under self-weight', Tehnički vjesnik, 23(2), str. 555-559. https://doi.org/10.17559/TV-20140226123632
Vancouver
Rosandić Ž, Kotšmíd S, Beňo P, Minárik M. An approximation of deflection line function at the rod loaded by buckling under self-weight. Tehnički vjesnik [Internet]. 2016 [pristupljeno 05.03.2021.];23(2):555-559. https://doi.org/10.17559/TV-20140226123632
IEEE
Ž. Rosandić, S. Kotšmíd, P. Beňo i M. Minárik, "An approximation of deflection line function at the rod loaded by buckling under self-weight", Tehnički vjesnik, vol.23, br. 2, str. 555-559, 2016. [Online]. https://doi.org/10.17559/TV-20140226123632
Puni tekst: hrvatski, pdf (501 KB) str. 555-559 preuzimanja: 234* citiraj
APA 6th Edition
Rosandić, Ž., Kotšmíd, S., Beňo, P. i Minárik, M. (2016). Aproksimacija funkcije linije otklona za štap opterećen izvijanjem pod vlastitom težinom. Tehnički vjesnik, 23 (2), 555-559. https://doi.org/10.17559/TV-20140226123632
MLA 8th Edition
Rosandić, Željko, et al. "Aproksimacija funkcije linije otklona za štap opterećen izvijanjem pod vlastitom težinom." Tehnički vjesnik, vol. 23, br. 2, 2016, str. 555-559. https://doi.org/10.17559/TV-20140226123632. Citirano 05.03.2021.
Chicago 17th Edition
Rosandić, Željko, Stanislav Kotšmíd, Pavel Beňo i Marián Minárik. "Aproksimacija funkcije linije otklona za štap opterećen izvijanjem pod vlastitom težinom." Tehnički vjesnik 23, br. 2 (2016): 555-559. https://doi.org/10.17559/TV-20140226123632
Harvard
Rosandić, Ž., et al. (2016). 'Aproksimacija funkcije linije otklona za štap opterećen izvijanjem pod vlastitom težinom', Tehnički vjesnik, 23(2), str. 555-559. https://doi.org/10.17559/TV-20140226123632
Vancouver
Rosandić Ž, Kotšmíd S, Beňo P, Minárik M. Aproksimacija funkcije linije otklona za štap opterećen izvijanjem pod vlastitom težinom. Tehnički vjesnik [Internet]. 2016 [pristupljeno 05.03.2021.];23(2):555-559. https://doi.org/10.17559/TV-20140226123632
IEEE
Ž. Rosandić, S. Kotšmíd, P. Beňo i M. Minárik, "Aproksimacija funkcije linije otklona za štap opterećen izvijanjem pod vlastitom težinom", Tehnički vjesnik, vol.23, br. 2, str. 555-559, 2016. [Online]. https://doi.org/10.17559/TV-20140226123632

Sažetak
The paper deals with an approximation of the exact deflection line function at a rod loaded by self-weight buckling via the function, which is best-presented by the exact shape of this rod. In this paper, we suggest the methods of derivation of the critical buckling length by the exact solution and by the energy method. For the substitute functions of deflection line, the variants of goniometric functions and polynomials are chosen. Individual coefficients of the functions are chosen on the basis of existing boundary conditions and in the case of their insufficient count, they are chosen in order to express the exact rod deflection line shape in the most suitable way, which was transposed from the concrete example solution by SolidWorks Simulation software. The paper shows the errors of critical buckling length calculation against the exact solution, as well as the maximum absolute and relative deviations in the lateral displacement for the chosen function. From the individual substitute functions, one function that meets the condition for general use and has the lowest deviations from the exact solution, is subsequently chosen.

Ključne riječi
approximation of function; buckling; polynomials; self-weight

Hrčak ID: 156855

URI
https://hrcak.srce.hr/156855

[hrvatski]

Posjeta: 795 *