hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.3336/gm.52.1.08

A remark on global W^1,p bounds for harmonic functions with Lipschitz boundary values

Nikos Katzourakis   ORCID icon orcid.org/0000-0001-5292-270X ; Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, United Kindgom

Puni tekst: engleski, pdf (114 KB) str. 107-113 preuzimanja: 177* citiraj
APA 6th Edition
Katzourakis, N. (2017). A remark on global W^1,p bounds for harmonic functions with Lipschitz boundary values. Glasnik matematički, 52 (1), 107-113. https://doi.org/10.3336/gm.52.1.08
MLA 8th Edition
Katzourakis, Nikos. "A remark on global W^1,p bounds for harmonic functions with Lipschitz boundary values." Glasnik matematički, vol. 52, br. 1, 2017, str. 107-113. https://doi.org/10.3336/gm.52.1.08. Citirano 22.09.2020.
Chicago 17th Edition
Katzourakis, Nikos. "A remark on global W^1,p bounds for harmonic functions with Lipschitz boundary values." Glasnik matematički 52, br. 1 (2017): 107-113. https://doi.org/10.3336/gm.52.1.08
Harvard
Katzourakis, N. (2017). 'A remark on global W^1,p bounds for harmonic functions with Lipschitz boundary values', Glasnik matematički, 52(1), str. 107-113. https://doi.org/10.3336/gm.52.1.08
Vancouver
Katzourakis N. A remark on global W^1,p bounds for harmonic functions with Lipschitz boundary values. Glasnik matematički [Internet]. 2017 [pristupljeno 22.09.2020.];52(1):107-113. https://doi.org/10.3336/gm.52.1.08
IEEE
N. Katzourakis, "A remark on global W^1,p bounds for harmonic functions with Lipschitz boundary values", Glasnik matematički, vol.52, br. 1, str. 107-113, 2017. [Online]. https://doi.org/10.3336/gm.52.1.08

Sažetak
In this note we show that gradient of harmonic functions on a smooth domain with Lipschitz boundary values is pointwise bounded by a universal function which is in Lp for all finite p≥ 1.

Ključne riječi
Harmonic functions; Dirichlet problem; Schauder estimates

Hrčak ID: 183126

URI
https://hrcak.srce.hr/183126

Posjeta: 262 *