hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.21278/brod69104

HIGHLY PRECISE APPROXIMATION OF FREE SURFACE GREEN FUNCTION AND ITS HIGH ORDER DERIVATIVES BASED ON REFINED SUBDOMAINS

Penghao Shan ; Marine Design and Research Institute of China, No.168 Zhongshan Nanyi Road, Shanghai China, 200011. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, China.
Jiameng Wu ; Marine Design and Research Institute of China, No.168 Zhongshan Nanyi Road, Shanghai China, 200011. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, China.

Puni tekst: engleski, pdf (1 MB) str. 53-70 preuzimanja: 342* citiraj
APA 6th Edition
Shan, P. i Wu, J. (2018). HIGHLY PRECISE APPROXIMATION OF FREE SURFACE GREEN FUNCTION AND ITS HIGH ORDER DERIVATIVES BASED ON REFINED SUBDOMAINS. Brodogradnja, 69 (1), 53-70. https://doi.org/10.21278/brod69104
MLA 8th Edition
Shan, Penghao i Jiameng Wu. "HIGHLY PRECISE APPROXIMATION OF FREE SURFACE GREEN FUNCTION AND ITS HIGH ORDER DERIVATIVES BASED ON REFINED SUBDOMAINS." Brodogradnja, vol. 69, br. 1, 2018, str. 53-70. https://doi.org/10.21278/brod69104. Citirano 28.10.2021.
Chicago 17th Edition
Shan, Penghao i Jiameng Wu. "HIGHLY PRECISE APPROXIMATION OF FREE SURFACE GREEN FUNCTION AND ITS HIGH ORDER DERIVATIVES BASED ON REFINED SUBDOMAINS." Brodogradnja 69, br. 1 (2018): 53-70. https://doi.org/10.21278/brod69104
Harvard
Shan, P., i Wu, J. (2018). 'HIGHLY PRECISE APPROXIMATION OF FREE SURFACE GREEN FUNCTION AND ITS HIGH ORDER DERIVATIVES BASED ON REFINED SUBDOMAINS', Brodogradnja, 69(1), str. 53-70. https://doi.org/10.21278/brod69104
Vancouver
Shan P, Wu J. HIGHLY PRECISE APPROXIMATION OF FREE SURFACE GREEN FUNCTION AND ITS HIGH ORDER DERIVATIVES BASED ON REFINED SUBDOMAINS. Brodogradnja [Internet]. 2018 [pristupljeno 28.10.2021.];69(1):53-70. https://doi.org/10.21278/brod69104
IEEE
P. Shan i J. Wu, "HIGHLY PRECISE APPROXIMATION OF FREE SURFACE GREEN FUNCTION AND ITS HIGH ORDER DERIVATIVES BASED ON REFINED SUBDOMAINS", Brodogradnja, vol.69, br. 1, str. 53-70, 2018. [Online]. https://doi.org/10.21278/brod69104

Sažetak
The infinite depth free surface Green function (GF) and its high order derivatives for diffraction and radiation of water waves are considered. Especially second order derivatives are essential requirements in high-order panel method. In this paper, concerning the classical representation, composed of a semi-infinite integral involving a Bessel function and a Cauchy singularity, not only the GF and its first order derivatives but also second order derivatives are derived from four kinds of analytical series expansion and refined division of whole calculation domain. The approximations of special functions, particularly the hypergeometric function and the algorithmic applicability with different subdomains are implemented. As a result, the computation accuracy can reach 10-9 in whole domain compared with conventional methods based on direct numerical integration. Furthermore, numerical efficiency is almost equivalent to that with the classical method.

Ključne riječi
Green function; high-order derivatives; refined subdomains; series expansion

Hrčak ID: 187327

URI
https://hrcak.srce.hr/187327

Posjeta: 693 *