hrcak mascot   Srce   HID

Tehnički vjesnik, Vol.24 No.5 Listopad 2017.

Izvorni znanstveni članak
https://doi.org/10.17559/TV-20150319092835

Ragweed detection based on SURF features

Ádám Schiffer ; University of Pécs, H-7624, Pécs, Rókus 2., Hungary
Zoltán Sari ; University of Pécs, H-7624, Pécs, Rókus 2., Hungary
Péter Müller   ORCID icon orcid.org/0000-0002-2283-1791 ; University of Pécs, H-7624, Pécs, Rókus 2., Hungary
Ildikó Jancskar ; University of Pécs, H-7624, Pécs, Rókus 2., Hungary
Géza Varady ; University of Pécs, H-7624, Pécs, Rókus 2., Hungary
Zsolt Ercsey   ORCID icon orcid.org/0000-0001-5427-913X ; University of Pecs, H-7630, Pécs, Boszorkany 2., Hungary

Puni tekst: engleski, pdf (2 MB) str. 1519-1524 preuzimanja: 36* citiraj
APA
Schiffer, Á., Sari, Z., Müller, P., Jancskar, I., Varady, G., Ercsey, Z. (2017). Ragweed detection based on SURF features. Tehnički vjesnik, 24(5). doi:10.17559/TV-20150319092835
Puni tekst: hrvatski, pdf (2 MB) str. 1519-1524 preuzimanja: 25* citiraj
APA
Schiffer, Á., Sari, Z., Müller, P., Jancskar, I., Varady, G., Ercsey, Z. (2017). Otkrivanje ambrozije na osnovu SURF značajki. Tehnički vjesnik, 24(5). doi:10.17559/TV-20150319092835

Sažetak
The paper describes a parameter study corresponding to automatic detection of ragweed based on SURF features. The basic idea behind the method is to build a feature database from very simple ragweed samples containing characteristic features of the leaves of the plant, and compare the feature database to features extracted from natural images which contain or lack ragweed. The results of the study clearly show that the approach is promising and has value as a standalone method, or as a potential training basis for a classification expert system.

Ključne riječi
feature detection; parameter study; ragweed

Hrčak ID: 188249

URI
https://hrcak.srce.hr/188249

[hrvatski]

Posjeta: 114 *