hrcak mascot   Srce   HID

Original scientific paper
https://doi.org/10.5599/jese.630

A sensitive electrochemical sensor based on polypyrrole/electrochemically reduced graphene oxide for the determination of imidacloprid

Chenglong Chen ; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
Zhen Han ; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
Wu Lei ; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
Yong Ding ; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
Jingjing Lv ; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
Mingzhu Xia ; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
Fengyun Wang ; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
Qingli Hao ; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China

Fulltext: english, pdf (1 MB) pages 143-152 downloads: 235* cite
APA 6th Edition
Chen, C., Han, Z., Lei, W., Ding, Y., Lv, J., Xia, M., ... Hao, Q. (2019). A sensitive electrochemical sensor based on polypyrrole/electrochemically reduced graphene oxide for the determination of imidacloprid. Journal of Electrochemical Science and Engineering, 9 (3), 143-152. https://doi.org/10.5599/jese.630
MLA 8th Edition
Chen, Chenglong, et al. "A sensitive electrochemical sensor based on polypyrrole/electrochemically reduced graphene oxide for the determination of imidacloprid." Journal of Electrochemical Science and Engineering, vol. 9, no. 3, 2019, pp. 143-152. https://doi.org/10.5599/jese.630. Accessed 20 Sep. 2021.
Chicago 17th Edition
Chen, Chenglong, Zhen Han, Wu Lei, Yong Ding, Jingjing Lv, Mingzhu Xia, Fengyun Wang and Qingli Hao. "A sensitive electrochemical sensor based on polypyrrole/electrochemically reduced graphene oxide for the determination of imidacloprid." Journal of Electrochemical Science and Engineering 9, no. 3 (2019): 143-152. https://doi.org/10.5599/jese.630
Harvard
Chen, C., et al. (2019). 'A sensitive electrochemical sensor based on polypyrrole/electrochemically reduced graphene oxide for the determination of imidacloprid', Journal of Electrochemical Science and Engineering, 9(3), pp. 143-152. https://doi.org/10.5599/jese.630
Vancouver
Chen C, Han Z, Lei W, Ding Y, Lv J, Xia M, et al. A sensitive electrochemical sensor based on polypyrrole/electrochemically reduced graphene oxide for the determination of imidacloprid. Journal of Electrochemical Science and Engineering [Internet]. 2019 [cited 2021 September 20];9(3):143-152. https://doi.org/10.5599/jese.630
IEEE
C. Chen, et al., "A sensitive electrochemical sensor based on polypyrrole/electrochemically reduced graphene oxide for the determination of imidacloprid", Journal of Electrochemical Science and Engineering, vol.9, no. 3, pp. 143-152, 2019. [Online]. https://doi.org/10.5599/jese.630

Abstracts
The glassy carbon electrode (GCE) was modified by electrochemically reduced graphene oxide (ERGO) and polypyrrole (PPy) prepared by simple cyclic voltammetry (CV) electropoly­merization. The PPy/ERGO modified electrode (PPy/ERGO/GCE) was used as a platform of electrochemical sensor to detect imidacloprid (IMI) insecticide. CV and differential pulse voltammetry (DPV) were chosen as the methods to investigate of the electrochemical behavior of IMI on PPy/ERGO/GCE surface. Scanning electron microscopy (SEM) and Raman spectra were utilized to describe the morphology and structure of the modified electrode. Experimental parameters were optimized, such as the number of polymerization cycles, scan rate and the pH value of electrolyte. Under the optimized conditions, when the concentration of IMI was in the range of 1-10 μM and 10-60 μM, the increase of reduction peak current was linear with the concentration of IMI, and the low detection limit was found to be 0.18 μM (S/N = 3). Results showed that PPy/ERGO/GCE demonstrated satisfactory reproducibility and stability, and has great potential in actual sample testing.

Keywords
Electropolymerization; modified electrode; imidacloprid insecticide; electrochemical behavior; actual samples

Hrčak ID: 219922

URI
https://hrcak.srce.hr/219922

Visits: 466 *