Skoči na glavni sadržaj

Prethodno priopćenje

https://doi.org/10.31341/jios.42.2.5

Improving the Results of Google Scholar Engine through Automatic Query Expansion Mechanism and Pseudo Re-ranking using MVRA

Mawloud Mosbah orcid id orcid.org/0000-0002-6844-0606 ; Informatics Department, Faculty of Sciences, University 20 Août 1955 of Skikda, Algeria


Puni tekst: engleski pdf 1.012 Kb

str. 219-229

preuzimanja: 596

citiraj


Sažetak

In this paper, we address the enhancing of Google Scholar engine, in the context of text retrieval, through two mechanisms related to the interrogation protocol of that query expansion and reformulation. The both schemes are applied with re-ranking results using a pseudo relevance feedback algorithm that we have proposed previously in the context of Content based Image Retrieval (CBIR) namely Majority Voting Re-ranking Algorithm (MVRA). The experiments conducted using ten queries reveal very promising results in terms of effectiveness.

Ključne riječi

Information Retrieval; Google engine; Query Expansion; Query Reformulation; Re-ranking; Pseudo Relevance Feedback; MVRA.

Hrčak ID:

212219

URI

https://hrcak.srce.hr/212219

Datum izdavanja:

10.12.2018.

Posjeta: 1.408 *

accessibility

closePristupačnostrefresh

Ako želite spremiti trajne postavke, kliknite Spremi, ako ne - vaše će se postavke poništiti kad zatvorite preglednik.