hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.5562/cca3542

The Phenanthridine-modified Tyrosine Dipeptide: Synthesis and Non-covalent Binding to DNA and RNA

Antonija Erben ; Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
Josipa Matić ; Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
Nikola Basarić   ORCID icon orcid.org/0000-0001-9412-9734 ; Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
Ivo Piantanida   ORCID icon orcid.org/0000-0002-9933-446X ; Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia

Puni tekst: engleski, pdf (3 MB) str. 249-258 preuzimanja: 167* citiraj
APA 6th Edition
Erben, A., Matić, J., Basarić, N. i Piantanida, I. (2019). The Phenanthridine-modified Tyrosine Dipeptide: Synthesis and Non-covalent Binding to DNA and RNA. Croatica Chemica Acta, 92 (2), 249-258. https://doi.org/10.5562/cca3542
MLA 8th Edition
Erben, Antonija, et al. "The Phenanthridine-modified Tyrosine Dipeptide: Synthesis and Non-covalent Binding to DNA and RNA." Croatica Chemica Acta, vol. 92, br. 2, 2019, str. 249-258. https://doi.org/10.5562/cca3542. Citirano 11.08.2020.
Chicago 17th Edition
Erben, Antonija, Josipa Matić, Nikola Basarić i Ivo Piantanida. "The Phenanthridine-modified Tyrosine Dipeptide: Synthesis and Non-covalent Binding to DNA and RNA." Croatica Chemica Acta 92, br. 2 (2019): 249-258. https://doi.org/10.5562/cca3542
Harvard
Erben, A., et al. (2019). 'The Phenanthridine-modified Tyrosine Dipeptide: Synthesis and Non-covalent Binding to DNA and RNA', Croatica Chemica Acta, 92(2), str. 249-258. https://doi.org/10.5562/cca3542
Vancouver
Erben A, Matić J, Basarić N, Piantanida I. The Phenanthridine-modified Tyrosine Dipeptide: Synthesis and Non-covalent Binding to DNA and RNA. Croatica Chemica Acta [Internet]. 2019 [pristupljeno 11.08.2020.];92(2):249-258. https://doi.org/10.5562/cca3542
IEEE
A. Erben, J. Matić, N. Basarić i I. Piantanida, "The Phenanthridine-modified Tyrosine Dipeptide: Synthesis and Non-covalent Binding to DNA and RNA", Croatica Chemica Acta, vol.92, br. 2, str. 249-258, 2019. [Online]. https://doi.org/10.5562/cca3542

Sažetak
Dipeptide 4 containing two unnatural amino acids, a modified tyrosine and a phenanthridine derivative, was synthesized. Binding of the dipeptide to a series of polynucleotides including ct-DNA, poly A - poly U, poly (dAdT)2, poly dG - poly dC and poly (dGdC)2 was investigated by thermal denaturation experiments, fluorescence spectroscopy and circular dichroism. Thermal denaturation experiments indicated that dipeptide 4 at pH 5.0, when phenanthridine is protonated, stabilizes ds-DNA, whereas it destabilizes ds-RNA. At pH 7.0, when the phenanthridine is not protonated, effects of 4 to the polynucleotide melting temperatures are negligible. At pH 5.0, dipeptide 4 stabilized DNA double helices, and the changes in the CD spectra suggest different modes of binding to ds-DNA, most likely the intercalation to poly dG- poly dC and non-specific binding in grooves of other DNA polynucleotides. At variance to ds-DNA, addition of 4 destabilized ds-RNA against thermal denaturation and CD results suggest that addition of 4 probably induced dissociation of ds-RNA into ss-RNA strands due to preferred binding to ss-RNA. Thus, 4 is among very rare small molecules that stabilize ds-DNA but destabilize ds-RNA. However, fluorescence titrations with all polynucleotides at both pH values gave similar binding affinity (log Ka ≈ 5), indicating nonselective binding. Preliminary photochemical experiments suggest that dipeptide 4 reacts in the photochemical reaction, which affects polynucleotides chirality, presumably via quinone methide intermediates that alkylate DNA.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Ključne riječi
non-covalent binding to polynucleotides; oligopeptides; quinone methide precursors

Hrčak ID: 226261

URI
https://hrcak.srce.hr/226261

Posjeta: 336 *