Skoči na glavni sadržaj

Izvorni znanstveni članak

Block designs and strongly regular graphs constructed from the group U(3,4)

Dean Crnković
Vedrana Mikulić


Puni tekst: engleski pdf 185 Kb

str. 189-194

preuzimanja: 816

citiraj


Sažetak

We show a construction of the projective plane PG(2,16) and the Hermitian unital S(2,5,65) from the unitary group U(3,4) Further, we construct two block designs, a 2-(65,15,21) design and a 2-(65,26,250) design, and two strongly regular graphs with parameters (208,75,30,25) and (416,100,36,20). These incidence structures are defined on the elements of the conjugacy classes of the maximal subgroups of U(3,4). The group U(3,4) acts transitively as an automorphism group of the so constructed designs and strongly regular graphs. The strongly regular graph with parameters (416,100,36,20) has the full automorphism group of order 503193600, isomorphic to G(2,4) : Z2. Since the Janko group J2 is a subgroup of G(2,4), J2 acts as an automorphism group of the constructed SRG(416,100,36,20).

Ključne riječi

Unitary group; block design; projective plane; Steiner system; strongly regular graph

Hrčak ID:

5844

URI

https://hrcak.srce.hr/5844

Datum izdavanja:

9.12.2006.

Posjeta: 1.660 *

accessibility

closePristupačnostrefresh

Ako želite spremiti trajne postavke, kliknite Spremi, ako ne - vaše će se postavke poništiti kad zatvorite preglednik.