Skoči na glavni sadržaj

Izvorni znanstveni članak

Explicit stable methods for second order parabolic systems

N. Limić
M. Rogina


Puni tekst: engleski pdf 246 Kb

str. 97-115

preuzimanja: 706

citiraj


Sažetak

We show that it is possible to construct stable, explicit finite difference
approximations for the classical solution of the initial value problem for the parabolic systems of the form $\partial_tu=A(t,{\bf x})u+f$ on $\R^d$, where
$A(t,{\bf x}) \ = \ \sum_{ij} a_{ij}(t,{\bf x}) \partial_i\partial_j \ + \
\sum_i b_i(t,{\bf x}) \partial_i \ + \ c(t,{\bf x})$. The numerical scheme relies on an approximation of the elliptic operator $A(t,{\bf x})$ on an equidistant mesh by matrices that possess structure of a generator of Markov jump process.
In the case of ${\R}^2$ scaling of second difference operators can be applied to get the necessary structure of approximations, while in the case of $\R^d, \: d > 2$, rotations at grid-knots are performed in order to get the mentioned structure.
Numerical experiments illustrate the theory.

Ključne riječi

parabolic systems; finite difference schemes; Markov chains

Hrčak ID:

853

URI

https://hrcak.srce.hr/853

Datum izdavanja:

20.12.2000.

Posjeta: 1.392 *