Izvorni znanstveni članak
Positive exponential sums and odd polynomials
Marina Ninčević
; Department of Mathematics, Bijenička 30, Zagreb, Croatia
Siniša Slijepčević
orcid.org/0000-0001-5600-0171
; Department of Mathematics, Bijenička 30, Zagreb, Croatia
Sažetak
Given an odd integer polynomial f(x) of a degree k >= 3,
we construct a non-negative valued, normed trigonometric polynomial with non-vanishing coefficients only at values of f(x) not greater than n, and a small free coefficient a_0 = O((log n)^{−1/k}). This gives an alternative proof of the bound for the maximal possible cardinality of a set of integers A, so that A − A does not contain an integer value of f(x). We also discuss other interpretations and an ergodic characterization of that bound.
Ključne riječi
Positive exponential sums; van der Corput sets; correlative sets; recurrence; difference sets; Fejér’s kernel; positive definiteness
Hrčak ID:
127645
URI
Datum izdavanja:
30.9.2014.
Posjeta: 1.431 *