Skoči na glavni sadržaj

Izvorni znanstveni članak

https://doi.org/10.1080/00051144.2020.1760590

Fast brain tumour segmentation using optimized U-Net and adaptive thresholding

Bala Venkateswarlu Isunuri ; Department of Computer Science and Engineering, IIITDM Kancheepuram, Chennai, India
Jagadeesh Kakarla ; Department of Computer Science and Engineering, IIITDM Kancheepuram, Chennai, India


Puni tekst: engleski pdf 2.606 Kb

str. 352-360

preuzimanja: 476

citiraj


Sažetak

Brain tumour segmentation evolved as the dominant task in brain image processing. Most of the contemporary research proposals devise deep neural networks and sparse representation to address this issue. These methods inherently suffer from high computational cost and additional memory requirements. Thus, optimization of the computational cost became a challenging task for the contemporary research. This paper discusses an optimized U-Net model with post-processing for fast brain tumour segmentation. The proposed model includes two phases: training and testing. Training phase computes weights for optimized U-Net and an adaptive threshold value. In the testing phase, a trained U-Net model predicts a rough tumour segment. Adaptive thresholding grabs the final tumour with improved segmentation results. We have considered a brain tumour dataset of 3064 images with three types of brain tumours for evaluation. Our proposed model exhibits superior results than the existing models in terms of recall and dice similarity metrics. It exhibits competitive performance in accuracy and precision. Moreover, the proposed model outperforms its competitive models in training time.

Ključne riječi

Fast brain tumor segmentation; brain tumour extraction; optimized U-Net; adaptive thresholding

Hrčak ID:

239877

URI

https://hrcak.srce.hr/239877

Datum izdavanja:

25.6.2020.

Posjeta: 1.382 *