Skoči na glavni sadržaj

Izvorni znanstveni članak

On the smallest integer vector at which a multivariable polynomial does not vanish

Arturas Dubickas orcid id orcid.org/0000-0002-3625-9466 ; Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania


Puni tekst: engleski pdf 106 Kb

str. 227-235

preuzimanja: 321

citiraj


Sažetak

We prove that for any polynomial $P$ of degree $d$ in $\C[x_1,\dots,x_n]$ there exists a vector $(u_1,\dots,u_n) \in \Z^n$ such that $P(u_1,\dots,u_n) \ne 0$ and $\sum_{i=1}^n |u_i| \leq \min\{d, \lfloor (d+n)/2 \rfloor\}$. We also show that this bound is best possible. Similarly, for any $P \in \C[x_1,\dots,x_n]$ of degree $d$ and any real number $p \geq \log 3/\log 2$ there is a vector $(u_1,\dots,u_n) \in \Z^n$ such that $P(u_1,\dots,u_n) \ne 0$ and $\sum_{i=1}^n |u_i|^p \leq \max\{1+\lfloor d/2 \rfloor^p, \lfloor (d+1)/2 \rfloor^p\}$. The latter bound is also best possible for every $n \geq 2$.

Ključne riječi

multivariable polynomial; combinatorial Nullstellensatz; $L^p$-norm; integer vector

Hrčak ID:

244263

URI

https://hrcak.srce.hr/244263

Datum izdavanja:

29.9.2020.

Posjeta: 960 *