Glasnik matematički, Vol. 43 No. 1, 2008.
Izvorni znanstveni članak
https://doi.org/10.3336/gm.43.1.09
Approximation and moduli of fractional order in Smirnov-Orlicz classes
Ramazan Akgün
orcid.org/0000-0001-6247-8518
; Balikesir University, Faculty of Science and Art, Department of Mathematics
Daniyal M. Israfilov
; Institute of Math. and Mech. NAS Azerbaijan
Sažetak
In this work we investigate the approximation problems in the Smirnov-Orlicz spaces in terms of the fractional modulus of smoothness. We prove the direct and inverse theorems in these spaces and obtain a constructive descriptions of the Lipschitz classes of functions defined by the fractional order modulus of smoothness, in particular.
Ključne riječi
Orlicz space; Smirnov-Orlicz class; Dini-smooth curve; direct theorems; inverse theorems; fractional modulus of smoothness
Hrčak ID:
23536
URI
Datum izdavanja:
25.5.2008.
Posjeta: 1.531 *