Skoči na glavni sadržaj

Izvorni znanstveni članak

https://doi.org/10.1080/00051144.2023.2217602

Stock market prediction based on deep hybrid RNN model and sentiment analysis

Ancy John ; St. Xavier’s Catholic College of Engineering, Nagercoil, India *
T. Latha ; Department of ECE, St. Xavier’s Catholic College of Engineering, Nagercoil, India

* Dopisni autor.


Puni tekst: engleski pdf 3.270 Kb

str. 981-995

preuzimanja: 245

citiraj


Sažetak

Stock market movements, stocks, and exchange rates are the primary subjects and active areas of research for analysts and researchers. The stock prices is being influenced by financial news, which has been demonstrated to be an important element in fluctuating stock prices. Furthermore, previous research mostly evaluated shallow characteristics and ignored functional relationships between words in a sentence. Many studies have attempted to analyse the sentiment of investors’ reactions to corresponding news occurrences. In this paper, we proposed a unique methodology for predicting the stock prices trend by using both stock features and financial news. The proposed methodology is the hybrid Recurrent Neural-Network (HyRNN) architecture. This design includes Bidirectional Long Short-Term Memory (Bi-LSTM) on top of the Gated Recurrent Unit (GRU) and stacked Long Short-Term Memory (sLSTM). The performance of HyRNN for forecasting stock price can be considerably improved by mixing the sentiments of financial news with the features of stock as an input to the model. In comparison to earlier statistical models, the suggested model increases the analysing capability of GRU, LSTM, RNN, and proposed models independently. The findings of this study shows the deep learning (DL) approach has high potential for predicting stock price changes.

Ključne riječi

LSTM; neural network; sentiment analysis; stock market; intelligence stock market; sentiment detaining

Hrčak ID:

315955

URI

https://hrcak.srce.hr/315955

Datum izdavanja:

27.7.2023.

Posjeta: 688 *