Skoči na glavni sadržaj

Izvorni znanstveni članak

Dirac operators on Weil representations II

Pavle Pandžić orcid id orcid.org/0000-0002-7405-4381 ; Department of Mathematics, University of Zagreb, Zagreb, Croatia


Puni tekst: engleski pdf 239 Kb

str. 411-424

preuzimanja: 586

citiraj


Sažetak

Let G be a metaplectic double cover of the group G of four-by-four real symplectic matrices.
Let $\frg$ be the complexified Lie algebra of G. Denote by $W_0$ and $W_1$ the Harish-Chandra modules of the even and odd Weil representations of $G$, respectively. We find the Dirac cohomology of $W_0$ and $W_1$ with respect to a noncompact Levi subalgebra $\frl$ of a $\theta$-stable parabolic subalgebra of $\frg$. The
results can be considered as counterexamples to certain generalizations of the main results of [9].

Ključne riječi

symplectic group; Weil representation; Dirac operator

Hrčak ID:

61868

URI

https://hrcak.srce.hr/61868

Datum izdavanja:

8.12.2010.

Posjeta: 1.265 *