Original scientific paper
Microstructural evolution of the coexistence for spinodal decomposition and ordering in Fe-23Al alloy during aging
Zhonghong Lai
Fei Li
Rongda Zhao
Jingchuan Zhu
BaoYou Zhang
Abstract
The microstructural evolution of the coexistence ofspinodal decomposition and ordering ischaracterized by metallographic microscopy andtransmission electron microscopy in aged Fe-23Al(i.e. Fe-23at%Al) alloy. This paper discusses aphase transition mechanism of the microstructureevolution. The obtained results indicate that the asquenchedFe-23Al alloys with equiaxed grain sizeof about 500μm comprise two kinds of the orderedphase in nano-scale, i.e., B2-FeAl and DO3-Fe 3Alphases. The average size of B2-FeAl orderingphases is about 15nm, while the size of DO3-Fe 3Alordering phases is extreme fine in the as- quenchedFe-23Al alloys. The as-quenched Fe-23Al alloypresents characteristics of the coexistence ofspinodal decomposition and ordering during thesubsequent age ing at 565°C and 520°C. Thedomain size of B2-FeAl ordered phase rapidlyincreases while the one of DO3-Fe 3Al orderedphase slowly develops with the increase in agingtime/with increased ageing time. A conclusion isreached that the coarsening process of both B2-FeAl and DO3-Fe 3Al ordered phase is controlledby the spinodal decomposition mechanism.
Keywords
Fe-23Al alloy; aging; spinodal decomposition; ordering
Hrčak ID:
111106
URI
Publication date:
25.11.2013.
Visits: 1.304 *