Glasnik matematički, Vol. 48 No. 2, 2013.
Original scientific paper
https://doi.org/10.3336/gm.48.2.14
On strongly freely decomposable and induced maps
Javier Camargo
; Escuela de Matemáticas, Facultad de Ciencias, Universidad Industrial de Santander, Ciudad Universitaria, Carrera 27 Calle 9, Bucaramanga, Santander, A. A. 678, Colombia
Sergio Macias
; Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D. F., C. P. 04510, Mexico
Abstract
Freely decomposable and strongly freely decomposable maps were introduced by G. R. Gordh and C. B. Hughes as a generalization of monotone maps with the property that these maps preserve local connectedness in inverse limits. We prove some relationships between f, Cn(f) and 2f, when f, Cn(f) or 2f belong to the following classes of maps: Almost monotone, quasi-monotone, weakly monotone, freely decomposable or strongly freely decomposable. We correct two corollaries formulated by Jaunusz J. Charatonik in ``On feebly monotone and related classes of maps''. We also present an alternative reformulation of these results.
Keywords
Confluent map; continua; freely decomposable map; irreducible continuum; local homeomorphism; monotone map; quasi-monotone map; strongly freely decomposable map
Hrčak ID:
112218
URI
Publication date:
16.12.2013.
Visits: 1.156 *