Skip to the main content

Professional paper

Vektorski produkt na \(\mathbb{R}^{n}\), normirane algebre i H–prostori

Matea Pavlek ; Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu
Ozren Perše ; Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu


Full text: croatian pdf 248 Kb

page 27-48

downloads: 1.153

cite


Abstract

U ovom preglednom radu prezentiramo konstrukciju vektorskog produkta na \(\mathbb{R}^{n}\), danu u radu P. F. McLoughlin, arXiv:1212.3515. Pokazujemo da vektorski produkt, definiran na prirodan način, postoji samo za n = 0, 1, 3, 7 (pritom s \(\mathbb{R}^{0}\) označavamo nulprostor nad \(\mathbb{R}\) ). Proučavamo vezu vektorskog produkta s Hurwitzovim teoremom o postojanju normiranih algebri samo za dimenzije n = 1, 2, 4, 8, te s Adamsovim teoremom o neprekidnim množenjima na sferi. Također, proučavamo mogućnosti generalizacije vektorskog produkta na \( \mathbb{R}^{n}\) , s funkcije dvije varijable na funkciju više varijabli.

Keywords

vektorski produkt; normirana algebra; H–prostor

Hrčak ID:

165817

URI

https://hrcak.srce.hr/165817

Publication date:

1.8.2016.

Article data in other languages: english

Visits: 2.270 *