Glasnik matematički, Vol. 51 No. 2, 2016.
Original scientific paper
https://doi.org/10.3336/gm.51.2.02
Mersenne k-Fibonacci numbers
Jhon J. Bravo
orcid.org/0000-0001-7772-9260
; Departamento de Matemáticas, Universidad del Cauca, Calle 5 No 4-70, Popayán, Colombia
Carlos A. Gómez
orcid.org/0000-0003-1126-2973
; Departamento de Matemáticas, Universidad del Valle, Calle 13 No 100-00, Cali, Colombia
Abstract
For an integer k≥ 2, let (Fn(k))n be the k-Fibonacci sequence which starts with 0,...,0,1 (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all k-Fibonacci numbers which are Mersenne numbers, i.e., k-Fibonacci numbers that are equal to 1 less than a power of 2. As a consequence, for each fixed k, we prove that there is at most one Mersenne prime in (Fn(k))n.
Keywords
Generalized Fibonacci numbers; Mersenne numbers; linear forms in logarithms; reduction method
Hrčak ID:
170038
URI
Publication date:
3.12.2016.
Visits: 1.834 *