Skip to the main content

Original scientific paper

A remark on the radial solutions of a modified Schrödinger system by the dual approach

Dragos-Patru Covei ; Department of Applied Mathematics, The Bucharest University of Economic Studies, Piata Romana, 1st District, Bucharest, Romania


Full text: english pdf 140 Kb

page 245-262

downloads: 260

cite


Abstract


By using some reorganized ideas combined with successive approximationtechnique we establish conditions for the existence of positive entireradially symmetric solutions for a modified Schr\"{o}dinger system%\begin{equation*}\left\{ \begin{array}{l}\Delta u_{1}+\Delta (|u_{1}|^{2\gamma _{1}})\left\vert u_{1}\right\vert^{2\gamma _{1}-2}u_{1}=a_{1}(\left\vert x\right\vert )\Psi _{1}\left(u_{1}\right) F_{1}(u_{2})\text{ in }\mathbb{R}^{N}\text{,} \\ \Delta u_{2}+\Delta (|u_{2}|^{2\gamma _{2}})\left\vert u_{2}\right\vert^{2\gamma _{2}-2}u_{2}=a_{2}(\left\vert x\right\vert )\Psi _{2}\left(u_{2}\right) F_{2}(u_{1})\text{ in }\mathbb{R}^{N}\text{,}%\end{array}%\right. \end{equation*}%where $\gamma _{1},\gamma _{2}\in \left( \frac{1}{2},\infty \right) $, $%N\geq 3$ and the functions $a_{1}$, $a_{2}$, $\Psi _{1}\left( u_{1}\right) $%, $\Psi _{2}\left( u_{2}\right) $, $F_{1}$, $F_{2}$ are suitably chosen. Ourobtained results improve and extend some previous works and haveapplications in several areas of mathematics and various applied sciencesincluding the study of nonreactive scattering of atoms and molecules.

Keywords

partial differential equations; cooperative systems; linear systems; nonlinear systems; approximation methods

Hrčak ID:

227104

URI

https://hrcak.srce.hr/227104

Publication date:

25.10.2019.

Visits: 880 *