Original scientific paper
https://doi.org/10.24138/jcomss-2021-0071
Early Detection of External Neurological Symptoms through a Wearable Smart-Glasses Prototype
Andrea Sciarrone
; DITEN Department, University of Genoa, Italy
Igor Bisio
; DITEN Department, University of Genoa, Italy
Chiara Garibotto
; DITEN Department, University of Genoa, Italy
Fabio Lavagetto
; DITEN Department, University of Genoa, Italy
Mehrnaz Hamedani
; DINOGMI Department, University of Genoa, Italy
Valeria Prada
; DINOGMI Department, University of Genoa, Italy
Angelo Schenone
; DINOGMI Department, University of Genoa, Italy
Federico Boero
; Gruppo FOS, Genoa, Italy
Gianluca Gambari
; Gruppo FOS, Genoa, Italy
Marco Cereia
; FONDA Vision Health Technology, Genoa, Italy
Michele Jurilli
; FONDA Vision Health Technology, Genoa, Italy
Abstract
The Internet of Things (IoT) framework is moving the research community to provide smart systems and solutions aimed at revolutionizing medical sciences and healthcare. Given the extreme diffusion of Alzheimer’s disease (AD) and Parkinson’s disease (PD), the demand for a solution to early detect neurological symptoms of such diseases strongly arose. According to the medical literature, such early detection can be obtained through the correlation between PD and AD and some external symptoms: the Essential Tremor (ET) and the number of Eye Blinks (EBs). In this paper, which can be considered as an extended version of [1], we present a prototype of wearable smart glasses able to detect the presence of ET of the head and to count the number of EBs at the same time, in a transparent way with respect to the final user. Numerical results demonstrate the reliability of the proposed approach: the proposed algorithms are able to i) correctly recognize the ET with an overall accuracy above 97% and ii) count the number of EBs with an overall error around 9%.
Keywords
IoT, eHealth, Wearable Technology, Eye Blink, Glasses, Neurological diseases, Signal Processing
Hrčak ID:
259391
URI
Publication date:
30.6.2021.
Visits: 990 *