Skip to the main content

Review article

Raste li drveće u šumi po pravilima zlatnog reza i Fibonaccijevog niza?

Juraj Zelić ; Požega


Full text: croatian pdf 2.616 Kb

page 331-343

downloads: 1.630

cite


Abstract

Na osnovi analize biometrijskih parametara rasta (prirasno-prihodne tablice) šumskih sastojina bukve EGT-II-D-11 (bukva sa šašem, Bezak et all, 1989) i hrasta lužnjaka (Quercus robur L.), Bezak, 2004, razmatra se mogući odgovor na pitanje: “Raste li drveće u šumi po pravilima zlatnog reza i Fibonaccijevog niza”?
Zlatni rez ili božanski omjer otkriven je u starim kulturama i civilizacijama, primjenjivan kao idealna proporcija u umjetnosti i graditeljstvu, a otkriva se u živom materijalnom svijetu prirodnih zakonitosti rasta i razvoja biljaka i životinja. Izražen brojem dekadskog sustava iznosi: f = (Ö 5 +1) / 2 = 1,6180339...
S omjerom zlatnog reza u uskoj je vezi Fibonaccijev niz, skup realnih brojeva čiji je član u nizu jednak zbroju dvaju prethodnih, primjerice 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144...
Utvrđeno je da po pravilima zlatnog reza i Fibonacijevog niza drveće u šumi raste u debljinu, to jest raste prsni promjer, kružna ploha ili temeljnica, opseg stabla i promjer krošnje stabla kao linearno zavisna varijabla prsnog promjera.
Rast prsnog promjera stabla može se izraziti linearnom funkcijom oblika: d = a + b t, u kojoj je zavisna varijabla prsni promjer a nezavisna starost stabla. Regresijski koeficijent b pokazje brzinu rasta stabla ili prirast, različit za pojedine vrste drveća i okolišne uvjete pod kojim stablo raste.
Izražava se kao b-modul, koji zajedno s regresijskom konstantom a predstavlja geometrijski rast jednakokutne spirale unutar tzv. vrtložnog pravokutnika s odnosom stranica zlatnog reza. Tjekom životne dobi stablo u sastojini “teži” prosječnom prirastu (brzini rasta) iskazanom vrijednošću b-modula.
Brzina rasta ili debljinski prirast predstavljen matematički derivacijom linearne funkcije daje konstantu b, kao izraz jednolikog gibanja, pozitivnog predznaka. Pomoću b-modula mogu se numerički iskazati boniteti za vrste drveća ili odrediti ekološko-gospodarski tipovi šuma.
Modelom je pretpostavljeno da sila rasta stabla u debljinu nije ometana silom otpora rastu, kao unutarnjom strukturom rasta, a oscilacije u rastu (prirastu) uvjetovane su vanjskim, prisilnim silama.
Rast stabla u visinu predstavljen matematičkom funkcijom drugog stupnja nema tijekom vremena zakonitost zlatnog reza i Fibonaccievog niza jer je sila rasta ometana prigušenom silom, silom otpora rastu, koja se tijekom životne dobi stabla povećava te završava maksimumom visine stabla, kada je sila otpora rastu u visinu jednaka sili rasta.
Brzina rasta u visinu svojstvena je svakoj vrsti drveća, a uvjetovana je i vanjskim utjecajima, bonitetom staništa, toplinom, svjetlošću, strujanjem zraka, gustoći sastojine...
Volumen rasta stabla je funkcija rasta prsnog promjera, visine i obličnog broja, uvjetovana unutarnjom strukturom rasta dviju suprotnih sila i vanjskim, prisilnim silama rasta te ne pokazuje rast po pravilu zlatnog reza i Fibonaccijevog niza. Zlatni rez volumena stabla, kao idealnu točku uravnoteženja proporcija vanjskog habitusa stabla i podzemnog dijela (korijena ), treba tražiti drugom metodologijom.

Keywords

Fibonaccijev niz, jednadžbe rasta, jednakokutna spirala, prigušena i prisilna gibanja, rast prsnog promjera stabla i promjera krošnje, sile otpora rastu, sile rasta, visinski i volumni rast, vrtložni pravokutnik., zlatni rez

Hrčak ID:

31311

URI

https://hrcak.srce.hr/31311

Article data in other languages: english

Visits: 2.802 *