Skip to the main content

Original scientific paper

https://doi.org/10.3326/fintp.39.4.4

Heavy-tailed modeling of CROBEX

Danijel Grahovac orcid id orcid.org/0000-0001-6918-3456 ; J. J. Strossmayer University of Osijek, Department of Mathematics, Osijek, Croatia
Nenad Šuvak orcid id orcid.org/0000-0002-5777-3763 ; J. J. Strossmayer University of Osijek, Department of Mathematics, Osijek, Croatia


Full text: english pdf 1.406 Kb

page 411-430

downloads: 431

cite


Abstract

Classical continuous-time models for log-returns usually assume their independence and normality of distribution. However, nowadays it is widely accepted that the empirical properties of log-returns often show a specific correlation structure and deviation from normality, in most cases suggesting that their distribution is heavy-tailed. Therefore we suggest an alternative continuous-time model for logreturns, a diffusion process with Student’s marginal distributions and exponentially decaying autocorrelation structure. This model depends on several unknown parameters that need to be estimated. The tail index is estimated by the method based on the empirical scaling function, while the parameters describing mean, variance and correlation structure are estimated by the method of moments. The model is applied to the CROBEX stock market index, meaning that the estimation of parameters is based on the CROBEX log-returns. The quality of the model is assessed by means of simulations, by comparing CROBEX log-returns with the simulated trajectories of Student’s diffusion depending on estimated parameter values.

Keywords

log-return; heavy-tailed distribution; Student’s distribution; diffusion process; geometric Brownian motion

Hrčak ID:

149491

URI

https://hrcak.srce.hr/149491

Publication date:

14.12.2015.

Visits: 1.075 *