Original scientific paper
https://doi.org/10.7307/ptt.v30i4.2657
Recognition Method of Drinking-driving Behaviors Based on PCA and RBF Neural Network
Yifan Sun
orcid.org/0000-0002-1409-6520
; Shandong University of Technology
Jinglei Zhang
; Shandong University of Technology
Xiaoyuan Wang
; Shandong University of Technology
Zhangu Wang
; Shandong University of Technology
Jie Yu
; Shandong University of Technology
Abstract
Drinking-driving behaviors are important causes of road traffic injuries, which are serious threats to the lives and property of traffic participants. Therefore, reducing the occurrences of drinking-driving behaviors has become an important problem of traffic safety research. Forty-eight male drivers and six female drivers who could drink moderate alcohol were chosen as participants. The drivers’ physiological data, operation behavior data, car running data, and driving environment data were collected by designing various virtual traffic scenes and organizing drivers to conduct driving simulation experiments. The original variables were analyzed by the Principal Component Analysis (PCA), and seven principal components were extracted as the input vector of the Radial Basis Function (RBF) neural network. The principal component data was used to train and verify the RBF neural network. The Levenberg-Marquardt (LM) algorithm was chosen to train the parameters of the neural network and build a drinking-driving recognition model based on PCA and RBF neural network to realize an accurate recognition of drinking-driving behaviors. The test results showed that the drinking-driving recognition model based on PCA and RBF neural network could identify drinking drivers accurately during driving process with a recognition accuracy of 92.01%, and the operation efficiency of the model was high. The research can provide useful reference for prevention and treatment of drinking and driving and traffic safety maintenance.
Keywords
Hrčak ID:
205388
URI
Publication date:
31.8.2018.
Visits: 1.054 *