Skip to the main content

Original scientific paper

https://doi.org/10.3336/gm.54.1.09

Multivalued anisotropic problem with Fourier boundary condition involving diffuse Radon measure data and variable exponents

Ibrahime Konaté ; Laboratoire de Mathématiques et Informatique, UFR. Sciences Exactes et Appliquées, Université Joseph Ki Zerbo, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
Stanislas Ouaro ; Laboratoire de Mathématiques et Informatique, UFR. Sciences Exactes et Appliquées, Université Joseph Ki Zerbo, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso


Full text: english pdf 207 Kb

page 211-232

downloads: 489

cite


Abstract

We study a nonlinear anisotropic elliptic problem under Fourier type boundary condition governed by a general anisotropic operator with variable exponents and diffuse Radon measure data which does not charge the sets of zero p(·)-capacity. We prove an existence and uniqueness result of entropy or renormalized solution.

Keywords

Fourier boundary; generalized Lebesgue-Sobolev spaces; anisotropic Sobolev spaces; weak solution; entropy solution; maximal monotone graph; bounded Radon diffuse measure; Marcinkiewicz spaces

Hrčak ID:

220847

URI

https://hrcak.srce.hr/220847

Publication date:

7.6.2019.

Visits: 1.270 *