Glasnik matematički, Vol. 54 No. 1, 2019.
Original scientific paper
https://doi.org/10.3336/gm.54.1.09
Multivalued anisotropic problem with Fourier boundary condition involving diffuse Radon measure data and variable exponents
Ibrahime Konaté
; Laboratoire de Mathématiques et Informatique, UFR. Sciences Exactes et Appliquées, Université Joseph Ki Zerbo, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
Stanislas Ouaro
; Laboratoire de Mathématiques et Informatique, UFR. Sciences Exactes et Appliquées, Université Joseph Ki Zerbo, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
Abstract
We study a nonlinear anisotropic elliptic problem under Fourier type boundary condition governed by a general anisotropic operator with variable exponents and diffuse Radon measure data which does not charge the sets of zero p(·)-capacity. We prove an existence and uniqueness result of entropy or renormalized solution.
Keywords
Fourier boundary; generalized Lebesgue-Sobolev spaces; anisotropic Sobolev spaces; weak solution; entropy solution; maximal monotone graph; bounded Radon diffuse measure; Marcinkiewicz spaces
Hrčak ID:
220847
URI
Publication date:
7.6.2019.
Visits: 1.270 *