Skip to the main content

Original scientific paper

Asymptotics of partial sums of the Dirichlet series of the arithmetic derivative

Pentti Haukkanen
Jorma K. Merikoski
Timo Tossavainen


Full text: english pdf 96 Kb

page 107-115

downloads: 411

cite


Abstract

Let $p\in\mathbb P$ and $s\in\mathbb R$, and suppose that$\emptyset\ne P\subset\mathbb P$ is finite.Given $n\in\mathbb Z_+$, let $n'$, $n'_p$, and $n'_P$ denote respectively its arithmetic derivative, arithmetic partial derivative with respect to~$p$,and arithmetic subderivative with respect to~$P$. We study the asymptotics of $$\sum_{1\le n\le x}\frac{n'}{n^s},\,\sum_{1\le n\le x}\frac{n'_p}{n^s},\quad{\rm and}\,\,\sum_{1\le n\le x}\frac{n'_P}{n^s}.$$ We also show that the abscissa of convergence of the corresponding Dirichlet series equals~two.

Keywords

Abscissa of convergence; arithmetic derivative; Dirichlet series

Hrčak ID:

235544

URI

https://hrcak.srce.hr/235544

Publication date:

12.3.2020.

Visits: 1.111 *