Skip to the main content

Original scientific paper

https://doi.org/10.17535/crorr.2020.0002

A sufficient conditions for global quadratic optimization

Mourad Naffouti ; Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
Abdeljelil Baccari ; The Higher National Engineering School of Tunis, University of Tunis, Tunisia


Full text: english pdf 334 Kb

page 11-19

downloads: 740

cite


Abstract

This paper is devoted to global optimality conditions for quadratic optimization problems in a real space of dimension n. More precisely, we are concerned with nonconvex quadratic optimization problems with linear constraints. We present some sufficient conditions of global optimality for such problems subject to linear equality and inequality constraints. We prove that when the set of Karush-Kuhn-Tucker triplets of this problem is convex, then a local minimizer is global.

Keywords

convex sets; global optimality conditions; linear constraints; nonconvex quadratic optimization

Hrčak ID:

240680

URI

https://hrcak.srce.hr/240680

Publication date:

7.7.2020.

Visits: 1.563 *