Skip to the main content

Original scientific paper

https://doi.org/10.5599/jese.1099

Tailoring surface properties of functionalized graphene papers aiming to enzyme immobilization

Jéssica Luzardo ; Materials Metrology Division, National Institute of Metrology, Quality and Technology (Inmetro), Av. Nossa Senhora das Graças, 50, CEP 25250-020, Duque de Caxias, Brazil
Douglas Aguiar ; Materials Metrology Division, National Institute of Metrology, Quality and Technology (Inmetro), Av. Nossa Senhora das Graças, 50, CEP 25250-020, Duque de Caxias, Brazil
Alexander Silva ; Materials Metrology Division, National Institute of Metrology, Quality and Technology (Inmetro), Av. Nossa Senhora das Graças, 50, CEP 25250-020, Duque de Caxias, Brazil
Sanair Oliveira ; Materials Metrology Division, National Institute of Metrology, Quality and Technology (Inmetro), Av. Nossa Senhora das Graças, 50, CEP 25250-020, Duque de Caxias, Brazil
Braulio Archanjo ; Materials Metrology Division, National Institute of Metrology, Quality and Technology (Inmetro), Av. Nossa Senhora das Graças, 50, CEP 25250-020, Duque de Caxias, Brazil
Renata Simão ; Nanotechnology Engineering Program -PENt, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária, CEP 21941-972, Rio de Janeiro, Brazil
Joyce Araujo ; Materials Metrology Division, National Institute of Metrology, Quality and Technology (Inmetro), Av. Nossa Senhora das Graças, 50, CEP 25250-020, Duque de Caxias, Brazil


Full text: english pdf 1.006 Kb

page 137-151

downloads: 193

cite


Abstract

he use of enzymes as catalysts requires recovery and reuse to make the process viable. Enzymatic immobilization changes enzyme stability, activity, and specificity. It is very important to explore new substrates for immobilization with appropriate composition and structure to improve the efficiency of the immobilized enzymes. This work explores the use of two different graphene oxide papers, one produced by oxidation route (GO) and the other by electrochemical synthesis (EG), aiming for β-galactosidase immobilization. The chemical and structural properties of these two papers were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Atomic force microscopy images showed that EG paper ensured more efficient immobilization of the enzymes on the surface of the paper. Cyclic voltammetry was used to monitor the reaction of conversion of lactose to glucose in the free enzyme solution and graphene paper immobilized enzyme solutions. The cyclic voltammetry analysis showed that immobilized enzymes on GO paper showed an improvement in the activity of β-galactose when compared to free enzyme solution, as well as enzyme immobilized on a glassy carbon electrode.

Keywords

Sensors; graphene oxide; β-galactosidase; glucose; lactose; cyclic voltammetry

Hrčak ID:

273119

URI

https://hrcak.srce.hr/273119

Publication date:

24.2.2022.

Visits: 719 *