Publication date: 30 December 2022
Volume: Vol 57
Issue: Svezak 2
Pages: 239-250
DOI: https://doi.org/10.3336/gm.57.2.05
Original scientific paper
https://doi.org/10.3336/gm.57.2.05
The Hausdorff dimension of directional edge escaping points set
Xiaojie Huang
; Department of Science, Nanchang Institute of Technology, 330099 Nanchang, China
Zhixiu Liu
; Department of Science, Nanchang Institute of Technology, 330099 Nanchang, China
Yuntong Li
; Department of Basic Courses, Shaanxi Railway Institute, 714000 Weinan, China
In this paper, we define the directional edge escaping points set of function iteration under a given plane partition and then prove that the upper bound of Hausdorff dimension of the directional edge escaping points set of \(S(z)=a e^{z}+b e^{-z}\), where \(a, b\in \mathbb{C}\) and \(|a|^{2}+|b|^{2}\neq 0\), is no more than 1.
289605
30.12.2022.
Visits: 638 *