Skip to the main content

Original scientific paper

https://doi.org/10.21857/m8vqrtgr09

A ground state solution for a nonhomogeneous elliptic Kirchhoff type problem involving critical growth and Hardy term

Safia Benmansour ; Ecole supérieure de management de Tlemcen, Laboratoire d'analyse et controle des équations aux dérivées partielles, Université Djilali, Liabes Sidi Bel Abbès, Algérie
Nadjet Yagoub ; Laboratoire d'analyse et controle des équations aux dérivées partielles, Université Djilali, Liabes Sidi Bel Abbès, Algérie
Atika Matallah ; Ecole supérieure de management de Tlemcen, Laboratoire d'analyse et controle des équations aux dérivées partielles, Université Djilali, Liabes Sidi Bel Abbès, Algérie


Full text: english pdf 517 Kb

page 133-142

downloads: 339

cite


Abstract

This paper concerns singular elliptic Kirchhof’s equations whose nonlinearity has a critical growth and contains an inhomogeneous perturbation in a regular bounded domain of R3. To explore the existence of a ground state solution, we rely on various techniques related to variational methods and the Nehari decomposition.

Keywords

Variational methods; critical growth; Hardy term; singular elliptic problems; Kirchhoff equations

Hrčak ID:

307491

URI

https://hrcak.srce.hr/307491

Publication date:

25.8.2023.

Visits: 739 *