Glasnik matematički, Vol. 44 No. 1, 2009.
Original scientific paper
https://doi.org/10.3336/gm.44.1.12
Dendrites and symmetric products
Gerardo Acosta
; Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
Rodrigo Hernández-Gutiérrez
; Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
Verónica Martinez-de-la-Vega
; Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
Abstract
For a given continuum X and a natural number n, we consider the hyperspace Fn(X) of all nonempty subsets of X with at most n points, metrized by the Hausdorff metric. In this paper we show that if X is a dendrite whose set of end points is closed, n N and Y is a continuum such that the hyperspaces Fn(X) and Fn(Y) are homeomorphic, then Y is a dendrite whose set of end points is closed.
Keywords
Continuum; contractibility; dendrite; finite graph; unique hyperspace
Hrčak ID:
36953
URI
Publication date:
21.5.2009.
Visits: 1.939 *