Skip to the main content

Original scientific paper

https://doi.org/10.3336/gm.44.2.03

Arithmetic properties of the integer part of the powers of an algebraic number

Florian Luca ; Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México
Maurice Mignotte ; Université Louis Pasteur, UFR de mathématiques, 7 rue René Descartes, 67084 Strasbourg, France


Full text: english pdf 219 Kb

page 285-307

downloads: 649

cite


Abstract

For a real number x, we let x be the closest integer to x. In this paper, we look at the arithmetic properties of the integers θn when n ≥ 0, where θ > 1 is a fixed algebraic number.

Keywords

Powers of algebraic numbers; digital representations; applications of linear forms in logarithms and the subspace theorem

Hrčak ID:

44047

URI

https://hrcak.srce.hr/44047

Publication date:

9.12.2009.

Visits: 1.331 *