Skoči na glavni sadržaj

Izvorni znanstveni članak

https://doi.org/10.3336/gm.51.2.06

The Napoleon-Barlotti theorem in pentagonal quasigroups

Stipe Vidak ; Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia


Puni tekst: engleski pdf 210 Kb

str. 359-377

preuzimanja: 583

citiraj


Sažetak

Pentagonal quasigroups are IM-quasigroups in which the additional identity (ab · a) b · a=b holds. GS-quasigroups are IM-quasigroups in which the identity a(ab · c) · c=b holds. The relation between these two subclasses of IM-quasigroups is studied. The geometric concepts of GS-trapezoid and affine regular pentagon, previously defined and studied in GS-quasigroups, are now defined in a general pentagonal quasigroup. Along with the concepts of the regular pentagon and the centre of the regular pentagon, previously defined in pentagonal quasigroups, this enables formulations and proofs of some theorems of the Euclidean plane in a general pentagonal quasigroup. Among these theorems is the famous Napoleon-Barlotti theorem in the case n=5.

Ključne riječi

IM-quasigroup; pentagonal quasigroup; regular pentagon; affine regular pentagon

Hrčak ID:

170042

URI

https://hrcak.srce.hr/170042

Datum izdavanja:

3.12.2016.

Posjeta: 1.361 *

accessibility

closePristupačnostrefresh

Ako želite spremiti trajne postavke, kliknite Spremi, ako ne - vaše će se postavke poništiti kad zatvorite preglednik.