Skoči na glavni sadržaj

Izvorni znanstveni članak

https://doi.org/10.3336/gm.57.2.10

A note on maximal Fourier restriction for spheres in all dimensions

Marco Vitturi orcid id orcid.org/0000-0003-3351-6620 ; School of Mathematical Sciences, University College Cork, Western Gateway Building, Western Road, Cork, Ireland


Puni tekst: engleski pdf 114 Kb

str. 313-319

preuzimanja: 274

citiraj

Preuzmi JATS datoteku


Sažetak

We prove a maximal Fourier restriction theorem for hypersurfaces in Rd for any dimension d3 in a restricted range of exponents given by the Tomas-Stein theorem (spheres being the most canonical example). The proof consists of a simple observation. When d=3 the range corresponds exactly to the full Tomas-Stein one, but is otherwise a proper subset when d>3. We also present an application regarding the Lebesgue points of functions in F(Lp) when p is sufficiently close to 1.

Ključne riječi

Fourier restriction, maximal operators

Hrčak ID:

289610

URI

https://hrcak.srce.hr/289610

Datum izdavanja:

30.12.2022.

Posjeta: 803 *





This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.

accessibility

closePristupačnostrefresh

Ako želite spremiti trajne postavke, kliknite Spremi, ako ne - vaše će se postavke poništiti kad zatvorite preglednik.