Skoči na glavni sadržaj

Izvorni znanstveni članak

https://doi.org/10.3336/gm.46.1.11

Finite p-groups G with p>2 and d(G)>2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian

Zvonimir Janko ; Mathematical Institute, University of Heidelberg, 69120 Heidelberg, Germany


Puni tekst: engleski pdf 184 Kb

str. 103-120

preuzimanja: 486

citiraj


Sažetak

We give here a complete classification (up to isomorphism) of the title groups (Theorems 1, 3 and 5). The corresponding problem for p=2 was solved in [4] and for p>2 with d(G)=2 was solved in [5]. This gives a complete solution of the problem Nr. 861 of Y. Berkovich stated in [2].

Ključne riječi

Minimal nonabelian p-groups; A2-groups; metacyclic p-groups; Frattini subgroups; Hall-Petrescu formula; generators and relations; congruences mod p

Hrčak ID:

68885

URI

https://hrcak.srce.hr/68885

Datum izdavanja:

13.6.2011.

Posjeta: 1.214 *

accessibility

closePristupačnostrefresh

Ako želite spremiti trajne postavke, kliknite Spremi, ako ne - vaše će se postavke poništiti kad zatvorite preglednik.