hrcak mascot   Srce   HID

Stručni rad

Heap - ternary algebraic structure

Z. Kolar

Puni tekst: engleski, pdf (145 KB) str. 87-95 preuzimanja: 588* citiraj
APA 6th Edition
Kolar, Z. (2000). Heap - ternary algebraic structure. Mathematical Communications, 5 (1), 87-95. Preuzeto s https://hrcak.srce.hr/867
MLA 8th Edition
Kolar, Z.. "Heap - ternary algebraic structure." Mathematical Communications, vol. 5, br. 1, 2000, str. 87-95. https://hrcak.srce.hr/867. Citirano 26.10.2021.
Chicago 17th Edition
Kolar, Z.. "Heap - ternary algebraic structure." Mathematical Communications 5, br. 1 (2000): 87-95. https://hrcak.srce.hr/867
Harvard
Kolar, Z. (2000). 'Heap - ternary algebraic structure', Mathematical Communications, 5(1), str. 87-95. Preuzeto s: https://hrcak.srce.hr/867 (Datum pristupa: 26.10.2021.)
Vancouver
Kolar Z. Heap - ternary algebraic structure. Mathematical Communications [Internet]. 2000 [pristupljeno 26.10.2021.];5(1):87-95. Dostupno na: https://hrcak.srce.hr/867
IEEE
Z. Kolar, "Heap - ternary algebraic structure", Mathematical Communications, vol.5, br. 1, str. 87-95, 2000. [Online]. Dostupno na: https://hrcak.srce.hr/867. [Citirano: 26.10.2021.]

Sažetak
In this paper some classes of ternary algebraic structures (semi-heaps, heaps) are considered. The connection between heaps (laterally commutative heaps) and corresponding algebraic
and geometric structures is presented.
The equivalence of heap existence and the Desargues system on the same set is directly proved. It is the starting point for an analogous
result about a laterally commutative heap and a parallelogram space.

Ključne riječi
semi-heap; heap; ternary operation; Desargues system; parallelogram space

Hrčak ID: 867

URI
https://hrcak.srce.hr/867

Posjeta: 835 *