hrcak mascot   Srce   HID

Izvorni znanstveni članak

Using Data Mining to Predic Success in Studying

Vlado Simeunovic ; Faculty of Education in Bijeljina
Ljubiša Preradović ; Faculty of Architecture and Civil Engineering in Banja Luka

Puni tekst: engleski, pdf (472 KB) str. 491-523 preuzimanja: 198* citiraj
APA 6th Edition
Simeunovic, V. i Preradović, Lj. (2014). Using Data Mining to Predic Success in Studying. Croatian Journal of Education, 16 (2), 491-523. Preuzeto s https://hrcak.srce.hr/125033
MLA 8th Edition
Simeunovic, Vlado i Ljubiša Preradović. "Using Data Mining to Predic Success in Studying." Croatian Journal of Education, vol. 16, br. 2, 2014, str. 491-523. https://hrcak.srce.hr/125033. Citirano 15.09.2019.
Chicago 17th Edition
Simeunovic, Vlado i Ljubiša Preradović. "Using Data Mining to Predic Success in Studying." Croatian Journal of Education 16, br. 2 (2014): 491-523. https://hrcak.srce.hr/125033
Harvard
Simeunovic, V., i Preradović, Lj. (2014). 'Using Data Mining to Predic Success in Studying', Croatian Journal of Education, 16(2), str. 491-523. Preuzeto s: https://hrcak.srce.hr/125033 (Datum pristupa: 15.09.2019.)
Vancouver
Simeunovic V, Preradović Lj. Using Data Mining to Predic Success in Studying. Croatian Journal of Education [Internet]. 2014 [pristupljeno 15.09.2019.];16(2):491-523. Dostupno na: https://hrcak.srce.hr/125033
IEEE
V. Simeunovic i Lj. Preradović, "Using Data Mining to Predic Success in Studying", Croatian Journal of Education, vol.16, br. 2, str. 491-523, 2014. [Online]. Dostupno na: https://hrcak.srce.hr/125033. [Citirano: 15.09.2019.]
Puni tekst: hrvatski, pdf (472 KB) str. 491-523 preuzimanja: 293* citiraj
APA 6th Edition
Simeunovic, V. i Preradović, Lj. (2014). Primjena rudarenja podataka u predviđanju uspješnosti studiranja. Croatian Journal of Education, 16 (2), 491-523. Preuzeto s https://hrcak.srce.hr/125033
MLA 8th Edition
Simeunovic, Vlado i Ljubiša Preradović. "Primjena rudarenja podataka u predviđanju uspješnosti studiranja." Croatian Journal of Education, vol. 16, br. 2, 2014, str. 491-523. https://hrcak.srce.hr/125033. Citirano 15.09.2019.
Chicago 17th Edition
Simeunovic, Vlado i Ljubiša Preradović. "Primjena rudarenja podataka u predviđanju uspješnosti studiranja." Croatian Journal of Education 16, br. 2 (2014): 491-523. https://hrcak.srce.hr/125033
Harvard
Simeunovic, V., i Preradović, Lj. (2014). 'Primjena rudarenja podataka u predviđanju uspješnosti studiranja', Croatian Journal of Education, 16(2), str. 491-523. Preuzeto s: https://hrcak.srce.hr/125033 (Datum pristupa: 15.09.2019.)
Vancouver
Simeunovic V, Preradović Lj. Primjena rudarenja podataka u predviđanju uspješnosti studiranja. Croatian Journal of Education [Internet]. 2014 [pristupljeno 15.09.2019.];16(2):491-523. Dostupno na: https://hrcak.srce.hr/125033
IEEE
V. Simeunovic i Lj. Preradović, "Primjena rudarenja podataka u predviđanju uspješnosti studiranja", Croatian Journal of Education, vol.16, br. 2, str. 491-523, 2014. [Online]. Dostupno na: https://hrcak.srce.hr/125033. [Citirano: 15.09.2019.]

Sažetak
This paper deals with the creation of a model for predicting the performance of students during their studies using data mining, as well as with the analysis of factors which affect the achieved level of success. The model that is created on the basis of students’ socio-demographic data, data on their behaviour, personality characteristics, attitudes towards learning and the entire teaching
process organization tends to classify students into one of two categories of success. Performance is measured by students’ grade point average achieved over the period of studies. We tested three methods of data mining: logistic regression, decision trees and neural networks. We believe that the presented model would serve as a test for the creation of a broader base of updated data by using some of the information tools and that, based on this model, a number of attributes that would relatively reliably predict the performance in studying will be defined.

Ključne riječi
backward stepwise analysis; CART algorithm; decision trees; logistic regression; neural networks

Hrčak ID: 125033

URI
https://hrcak.srce.hr/125033

[hrvatski]

Posjeta: 865 *