hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.3336/gm.51.2.12

Dynamic properties for the induced maps on n-fold symmetric product suspensions

Franco Barragán ; Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima, Km. 2.5, Huajuapan de León, Oaxaca, C.P. 69000, México
Alicia Santiago-Santos ; Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima, Km. 2.5, Huajuapan de León, Oaxaca, C.P. 69000, México
Jesús F. Tenorio ; Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima, Km. 2.5, Huajuapan de León, Oaxaca, C.P. 69000, México

Puni tekst: engleski, pdf (199 KB) str. 453-474 preuzimanja: 346* citiraj
APA 6th Edition
Barragán, F., Santiago-Santos, A. i Tenorio, J.F. (2016). Dynamic properties for the induced maps on n-fold symmetric product suspensions. Glasnik matematički, 51 (2), 453-474. https://doi.org/10.3336/gm.51.2.12
MLA 8th Edition
Barragán, Franco, et al. "Dynamic properties for the induced maps on n-fold symmetric product suspensions." Glasnik matematički, vol. 51, br. 2, 2016, str. 453-474. https://doi.org/10.3336/gm.51.2.12. Citirano 22.10.2021.
Chicago 17th Edition
Barragán, Franco, Alicia Santiago-Santos i Jesús F. Tenorio. "Dynamic properties for the induced maps on n-fold symmetric product suspensions." Glasnik matematički 51, br. 2 (2016): 453-474. https://doi.org/10.3336/gm.51.2.12
Harvard
Barragán, F., Santiago-Santos, A., i Tenorio, J.F. (2016). 'Dynamic properties for the induced maps on n-fold symmetric product suspensions', Glasnik matematički, 51(2), str. 453-474. https://doi.org/10.3336/gm.51.2.12
Vancouver
Barragán F, Santiago-Santos A, Tenorio JF. Dynamic properties for the induced maps on n-fold symmetric product suspensions. Glasnik matematički [Internet]. 2016 [pristupljeno 22.10.2021.];51(2):453-474. https://doi.org/10.3336/gm.51.2.12
IEEE
F. Barragán, A. Santiago-Santos i J.F. Tenorio, "Dynamic properties for the induced maps on n-fold symmetric product suspensions", Glasnik matematički, vol.51, br. 2, str. 453-474, 2016. [Online]. https://doi.org/10.3336/gm.51.2.12

Sažetak
Let X be a continuum. For any positive integer n we consider the hyperspace Fn(X) and if n is greater than or equal to two, we consider the quotient space SFn(X) defined in [3]. For a given map f:X → X, we consider the induced maps Fn(f): Fn(X) → Fn(X) and SFn(f): SFn(X) → SFn(X) defined in [4]. Let M be one of the following classes of maps: exact, mixing, weakly mixing, transitive, totally transitive, strongly transitive, chaotic, minimal, irreducible, feebly open and turbulent. In this paper we study the relationships between the following statements: f M, Fn(f) M and SFn(f) M.

Ključne riječi
Chaotic map, exact map; feebly open map; hyperspace; induced map; irreducible map; minimal map; mixing map; strongly transitive map; symmetric product; symmetric product suspension; totally transitive map; transitive map; turbulent map; weakly mixing map

Hrčak ID: 170048

URI
https://hrcak.srce.hr/170048

Posjeta: 558 *