hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.55 No.2 Lipanj 2017.

Izvorni znanstveni članak
https://doi.org/10.17113/ftb.55.02.17.4896

Biokemijska karakterizacija rekombinantne ksilanaze iz bakterije Bacillus tequilensis BT21 i njezina primjena u proizvodnji ksilobioze iz poljoprivrednih otpadaka

Rakhee Khandeparker ; National Institute of Oceanography, CSIR, 403 004 Dona Paula, Goa, India
Pankaj Parab ; National Institute of Oceanography, CSIR, 403 004 Dona Paula, Goa, India
Ujwala Amberkar ; National Institute of Oceanography, CSIR, 403 004 Dona Paula, Goa, India

Puni tekst: engleski, pdf (456 KB) str. 164-172 preuzimanja: 80* citiraj
APA 6th Edition
Khandeparker, R., Parab, P. i Amberkar, U. (2017). Recombinant Xylanase from Bacillus tequilensis BT21: Biochemical Characterisation and Its Application in the Production of Xylobiose from Agricultural Residues. Food Technology and Biotechnology, 55 (2), 164-172. https://doi.org/10.17113/ftb.55.02.17.4896
MLA 8th Edition
Khandeparker, Rakhee, et al. "Recombinant Xylanase from Bacillus tequilensis BT21: Biochemical Characterisation and Its Application in the Production of Xylobiose from Agricultural Residues." Food Technology and Biotechnology, vol. 55, br. 2, 2017, str. 164-172. https://doi.org/10.17113/ftb.55.02.17.4896. Citirano 19.07.2018.
Chicago 17th Edition
Khandeparker, Rakhee, Pankaj Parab i Ujwala Amberkar. "Recombinant Xylanase from Bacillus tequilensis BT21: Biochemical Characterisation and Its Application in the Production of Xylobiose from Agricultural Residues." Food Technology and Biotechnology 55, br. 2 (2017): 164-172. https://doi.org/10.17113/ftb.55.02.17.4896
Harvard
Khandeparker, R., Parab, P., i Amberkar, U. (2017). 'Recombinant Xylanase from Bacillus tequilensis BT21: Biochemical Characterisation and Its Application in the Production of Xylobiose from Agricultural Residues', Food Technology and Biotechnology, 55(2), str. 164-172. doi: https://doi.org/10.17113/ftb.55.02.17.4896
Vancouver
Khandeparker R, Parab P, Amberkar U. Recombinant Xylanase from Bacillus tequilensis BT21: Biochemical Characterisation and Its Application in the Production of Xylobiose from Agricultural Residues. Food Technology and Biotechnology [Internet]. 14.06.2017. [pristupljeno 19.07.2018.];55(2):164-172. doi: https://doi.org/10.17113/ftb.55.02.17.4896
IEEE
R. Khandeparker, P. Parab i U. Amberkar, "Recombinant Xylanase from Bacillus tequilensis BT21: Biochemical Characterisation and Its Application in the Production of Xylobiose from Agricultural Residues", Food Technology and Biotechnology, vol.55, br. 2, str. 164-172, Srpanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.55.02.17.4896

Rad u XML formatu

Sažetak
Utvrđeno je da soj bakterije Bacillus tequilensis BT21, izoliran iz morskog sedimenta, može proizvesti izvanstaničnu ksilanazu. Gen xynBT21 za kodiranje ksilanaze kloniran je i eksprimiran u bakteriji Escherichia coli, gdje je kodirao protein molekularne mase od 23,3 kDa, koji sadržava 213 aminokiselinskih ostataka. Optimalna aktivnost pročišćene rekombinantne ksilanaze postignuta je pri temperaturi od 60 °C i pH=6. Enzim je bio izuzetno stabilan pri alkalnim pH vrijednostima. Pri pH=7 aktivnost mu je bila 100 % tijekom 24 sata, dok se tijekom inkubacije pri pH=8 i 9 aktivnost enzima povećala. Ksilanaza iz B. tequilensis imala je alkalnu pI vrijednost od 9,4; a pripada obitelji glikozilnih hidrolaza 11. Ispitano je djelovanje ksilanaze XynBT21 na ksilan iz bukve i ksilooligosaharide. Njihovom hidrolizom dobivena je pretežno ksilobioza (X2) uz manju količinu ksiloze (X1), zbog čega je zaključeno da je XynBT21 vjerojatno endoksilanaza. Enzimskom hidrolizom pšeničnih mekinja potvrđeno je da ksilanaza može proizvesti ksilobiozu na toj podlozi. Ksilooligosaharidi, osobito ksilobioza, imaju snažna bifidogena svojstva, pa se sve češće primjenjuju kao prebiotici. Ovo je prvi rad koji opisuje primjenu nove ksilanaze iz morske bakterije B. tequilensis BT21 za oslobađanje ksilobioze iz pšeničnih mekinja.

Ključne riječi
enzim; ksilanaza; alkalna pI-vrijednost; karakterizacija; Bacillus tequilensis; ksilobioza

Hrčak ID: 183063

URI
https://hrcak.srce.hr/183063

Reference

1 

Bhat MK, Hazlewood GP. Enzymology and other characteristics of cellulases and xylanases. In: Bedford MR, Partridge GG, editors. Enzymes in farm animal nutrition. Wallingford, UK: CABI Publishing; 2001. pp.11–60.

2 

Kormelink FJM, Searle-Van Leeuwen MJF, Wood TM, Voragen AGJ. Purification and characterization of three endo- -1,4-β-xylanases and one β-xylosidase from Aspergillus awamori. J Biotechnol. 1993;27:249–65. DOI: http://dx.doi.org/10.1016/0168-1656(93)90089-6

3 

Watanabe M, Inoue H, Inoue B, Yoshimi M, Fujii T, Ishikawa K. Xylanase (GH11) from Acremonium cellulolyticus: homologous expression and characterization. AMB Express. 2014;4:27. DOI: http://dx.doi.org/10.1186/s13568-014-0027-x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24949262

4 

Sharma P, Bajaj BK. Production and partial characterization of alkali-tolerant xylanase from an alkalophilic Streptomyces sp. CD3. J Sci Ind Res. 2005;64:688–97.

5 

Bocchini DA, Gomes E, Da Silva R. Xylanase production by Bacillus circulans D1 using maltose as carbon source. Appl Biochem Biotechnol. 2008;146:29–37. DOI: http://dx.doi.org/10.1007/s12010-007-8051-9 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18421584

6 

Khasin A, Alchanati I, Shoham Y. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol. 1993;59:1725–30. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/8328796

7 

Winterhalter C, Heinrich P, Candussio A, Wich G, Liebl W. Identification of a novel cellulose-binding domain within the multi domain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritime. Mol Microbiol. 1995;15:431–44. DOI: http://dx.doi.org/10.1111/j.1365-2958.1995.tb02257.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/7783614

8 

Keen NT, Boyd MC, Henrissat B. Cloning and characterization of a xylanase gene from corn strains of Erwinia chrysanthemi. Mol Plant Microbe Interact. 1996;9:651–7. DOI: http://dx.doi.org/10.1094/MPMI-9-0651 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/8810080

9 

Araki T, Hashikawa S, Morishita T. Cloning, sequencing and expression in Escherichia coli of the new gene encoding β-1,3-xylanase from a marine bacterium Vibrio sp. strain XY--214. Appl Environ Microbiol. 2000;66:1741–3. DOI: http://dx.doi.org/10.1128/AEM.66.4.1741-1743.2000 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/10742274

10 

Crawford AC, Richardson RN, Mather PB. Comparative study of cellulase and xylanase activity in freshwater crayfish and marine prawns. Aquacult Res. 2005;36:586–92. DOI: http://dx.doi.org/10.1111/j.1365-2109.2005.01259.x

11 

Khandeparkar R, Bhosle NB. Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Res Microbiol. 2006;157:315–25. DOI: http://dx.doi.org/10.1016/j.resmic.2005.12.001 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16426818

12 

Khandeparkar R, Bhosle N. Isolation, purification and characterization of the xylanase produced by Arthrobacter sp. MTCC 5214 when grown in solid-state fermentation. Enzyme Microb Technol. 2006;39:732–42. DOI: http://dx.doi.org/10.1016/j.enzmictec.2005.12.008

13 

Khandeparker R, Verma P, Deobagkar D. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing. N Biotechnol. 2011;28:814–21. DOI: http://dx.doi.org/10.1016/j.nbt.2011.08.001 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21890005

14 

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402. DOI: http://dx.doi.org/10.1093/nar/25.17.3389 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9254694

15 

Sambrook JEF, Fritsch MT. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY, USA: Cold Spring Harbor Press; 1989.

16 

Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40:W597–603. DOI: http://dx.doi.org/10.1093/nar/gks400 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22661580

17 

Cornelis P, Digneffe C, Willemot K. Cloning and expression of a Bacillus coagulans amylase gene in Escherichia coli. Mol Gen Genet. 1982;186:507–11. DOI: http://dx.doi.org/10.1007/BF00337957 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/6182447

18 

Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–8. DOI: http://dx.doi.org/10.1021/ac60147a030

19 

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85. DOI: http://dx.doi.org/10.1016/0003-2697(85)90442-7 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/3843705

20 

Esteban R, Villanueva JR, Villa TG. β-D-Xylanases of Bacillus circulans WL-12. Can J Microbiol. 1982;28:733–9. DOI: http://dx.doi.org/10.1139/m82-112

21 

Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41 M-1. Appl Environ Microbiol. 1993;59:2311–6. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/8292206

22 

Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934;56:658–66. DOI: http://dx.doi.org/10.1021/ja01318a036

23 

Takahashi Y, Kawabata H, Murakami S. Analysis of functional xylanases in xylan degradation by Aspergillus niger E-1 and characterization of the GH family 10 xylanase XynVII. Springerplus. 2013;2:447. DOI: http://dx.doi.org/10.1186/2193-1801-2-447 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24083101

24 

Sneath PHA. In: Holt JG, Krieg NR, editors. Bergey’s manual of systematic bacteriology. Baltimore, MD, USA: The Williams and Wilkins; 1994.

25 

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41:D36–42. DOI: http://dx.doi.org/10.1093/nar/gks1195 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23193287

26 

Gilkes NR, Henrissat B, Kilburn DG, Miller RCJ, Warren RAJ. Domains in microbial β-1,4-glycanases: sequence conservation function and enzyme families. Microbiol Rev. 1991;55:303–15. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/1886523

27 

Gallardo Ó, Diaz P, Pastor FIJ. Cloning and characterization of xylanase A from the strain Bacillus sp. BP-7: comparison with alkaline pI-low molecular weight xylanases of family 11. Curr Microbiol. 2004;48:276–9. DOI: http://dx.doi.org/10.1007/s00284-003-4196-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15057452

28 

Baek CU, Lee SG, Chung YR, Cho I, Kim JH. Cloning of a family 11 xylanase gene from Bacillus amyloliquefaciens CH51 isolated from Cheonggukjang. Indian J Microbiol. 2012;52:695–700. DOI: http://dx.doi.org/10.1007/s12088-012-0260-4 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24293733

29 

Goswami GK, Krishnamohan M, Nain V, Aggarwal C, Ramesh B. Cloning and heterologous expression of cellulose free thermostable xylanase from Bacillus brevis. Springerplus. 2014;3:20. DOI: http://dx.doi.org/10.1186/2193-1801-3-20 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25674425

30 

Teng S, Wang L, Srivastava AK, Schwartz CE, Alexov E. Structural assessment of the effects of amino acid substitutions on protein stability and protein-protein interaction. Int J Comput Biol Drug Des. 2010;3:334–49. DOI: http://dx.doi.org/10.1504/IJCBDD.2010.038396 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21297231

31 

Nagar S, Gupta VK, Kumar D, Kumar L, Kuhad RC. Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J Ind Microbiol Biotechnol. 2010;37:71–83. DOI: http://dx.doi.org/10.1007/s10295-009-0650-8 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19859753

32 

Bai Y, Wang J, Zhang Z, Yang P, Shi P, Luo H, et al. New xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotechnol. 2010;37:187–94. DOI: http://dx.doi.org/10.1007/s10295-009-0662-4 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19916085

33 

Wang SL, Yen YH, Shih IL, Chang AC, Chang WT, Wu WC, et al. Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme Microb Technol. 2003;33:917–25. DOI: http://dx.doi.org/10.1016/S0141-0229(03)00246-1

34 

Prajapati S, Bhakuni V, Babu KR, Jain SK. Alkaline unfolding and salt-induced folding of bovine liver catalase at high pH. Eur J Biochem. 1998;255:178–84. DOI: http://dx.doi.org/10.1046/j.1432-1327.1998.2550178.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9692917

35 

Balakrishnan H, Kamal KB, Dutta-Choudhury M, Rele MV. Characterization of alkaline thermoactive cellulase-free xylanases from alkalophilic Bacillus (NCL 87-6-10). J Biochem Mol Biol Biophys. 2002;6:325–34. DOI: http://dx.doi.org/10.1080/1025814021000003229 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12385968

36 

Wang C-C, Touster O. Turnover studies on proteins of rat liver lysosomes. J Biol Chem. 1975;250:4896–902. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/1150646

37 

Yang RC, MacKenzie CR, Bilous D, Narang SA. Identification of two distinct Bacillus circulans xylanases by molecular cloning of the genes and expression in Escherichia coli. Appl Environ Microbiol. 1989;55:568–72. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/2648989

38 

Dice JF, Goldberg AL. Relationship between in vivo degradative rates and isoelectric points of proteins. Proc Natl Acad Sci USA. 1975;72:3893–7. DOI: http://dx.doi.org/10.1073/pnas.72.10.3893 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/1060070

39 

Jiang ZQ, Deng W, Zhu YP, Li LT, Sheng YJ, Hayashi K. The recombinant xylanase B of Thermotoga maritima is highly xylan specific and produces exclusively xylobiose from xylans a unique character for industrial applications. J Mol Catal, B Enzym. 2004;27:207–13. DOI: http://dx.doi.org/10.1016/j.molcatb.2003.11.012

40 

Jeong KJ, Park IY, Kim MS, Kim SC. High level expression of an endoxylanase gene from Bacillus sp. in Bacillus subtilis DB 104 for the production of xylobiose from xylan. Appl Microbiol Biotechnol. 1998;50:113–8. DOI: http://dx.doi.org/10.1007/s002530051264 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9720207

41 

Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y, et al. Cloning, expression, and characterization of a new Streptomyces sp. S27 xylanase for which xylobiose is the main hydrolysis product. Appl Biochem Biotechnol. 2009;159:521–31. DOI: http://dx.doi.org/10.1007/s12010-008-8411-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19002659

42 

Shin JH, Choi JH, Lee OS, Kim YH, Lee DS, Kwak YY, et al. Thermostable xylanase from Streptomyces thermocyaneoviolaceus for optimal production of xylooligosaccharides. Biotechnol Bioprocess Eng; BBE. 2009;14:391–9. DOI: http://dx.doi.org/10.1007/s12257-008-0220-3

43 

Amrein TM, Gränicher P, Arrigoni E, Amadò R. In vitro digestibility and colonic fermentability of aleurone isolated from wheat bran. Lebensm Wiss Technol. 2003;36:451–60. DOI: http://dx.doi.org/10.1016/S0023-6438(03)00036-7

44 

Koga K, Kobayashi T, Fujikawa S, Sawada M. Skin preparations for external use. US patent 5660838. 1997.

45 

Aachary AA, Prapulla SG. Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis utilization structural characterization bioactive properties and applications. Compr Rev Food Sci Food Saf. 2011;10:2–16. DOI: http://dx.doi.org/10.1111/j.1541-4337.2010.00135.x

46 

Wang J, Cao Y, Wang C, Sun B. Wheat bran xylooligosaccharides improve blood lipid metabolism and antioxidant status in rats fed a high-fat diet. Carbohydr Polym. 2011;86:1192–7. DOI: http://dx.doi.org/10.1016/j.carbpol.2011.06.014

[engleski]

Posjeta: 141 *